Loading…

Switchable polymer-based thin film coils as a power module for wireless neural interfaces

Reliable chronic operation of implantable medical devices such as the Utah Electrode Array (UEA) for neural interface requires elimination of transcutaneous wire connections for signal processing, powering and communication of the device. A wireless power source that allows integration with the UEA...

Full description

Saved in:
Bibliographic Details
Published in:Sensors and actuators. A. Physical. 2007-05, Vol.136 (1), p.467-474
Main Authors: Kim, S., Zoschke, K., Klein, M., Black, D., Buschick, K., Toepper, M., Tathireddy, P., Harrison, R., Oppermann, H., Solzbacher, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c449t-b8bc3a09cd0d620d984fc9887b42311ac8d4b9093bda1ca6c4c9908eb311e7293
cites cdi_FETCH-LOGICAL-c449t-b8bc3a09cd0d620d984fc9887b42311ac8d4b9093bda1ca6c4c9908eb311e7293
container_end_page 474
container_issue 1
container_start_page 467
container_title Sensors and actuators. A. Physical.
container_volume 136
creator Kim, S.
Zoschke, K.
Klein, M.
Black, D.
Buschick, K.
Toepper, M.
Tathireddy, P.
Harrison, R.
Oppermann, H.
Solzbacher, F.
description Reliable chronic operation of implantable medical devices such as the Utah Electrode Array (UEA) for neural interface requires elimination of transcutaneous wire connections for signal processing, powering and communication of the device. A wireless power source that allows integration with the UEA is therefore necessary. While (rechargeable) micro-batteries as well as biological micro-fuel cells are yet far from meeting the power density and lifetime requirements of an implantable neural interface device, inductive coupling between two coils is a promising approach to power such a device with highly restricted dimensions. The power receiving coils presented in this paper were designed to maximize the inductance and quality factor of the coils and microfabricated using polymer-based thin film technologies. A flexible configuration of stacked thin film coils allows parallel and serial switching, thereby allowing to tune the coil's resonance frequency. The electrical properties of the fabricated coils were characterized and their power transmission performance was investigated in laboratory condition.
doi_str_mv 10.1016/j.sna.2006.10.048
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2344127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424706006856</els_id><sourcerecordid>29928242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-b8bc3a09cd0d620d984fc9887b42311ac8d4b9093bda1ca6c4c9908eb311e7293</originalsourceid><addsrcrecordid>eNp9kUtrGzEUhUVpaRy3PyCbolV34-jFjEShUELzgEAXbRZZCT3uxDKakSPNxOTfV8amTTYBgZDuuece7ofQGSUrSmh7vlmV0awYIW19r4iQ79CCyo43nLTqPVoQxUQjmOhO0GkpG0II5133EZ1QKbgUolug-9-7MLm1sRHwNsXnAXJjTQGPp3UYcR_igF0KsWBTT5XsIOMh-bnq-5TxLmSIUAoeYc4m4jBOkHvjoHxCH3oTC3w-3kt0d_nzz8V1c_vr6ubix23jhFBTY6V13BDlPPEtI15J0TslZWcF45QaJ72wiihuvaHOtE44pYgEW4vQMcWX6PvBdzvbAbyDcapB9DaHweRnnUzQrytjWOuH9KQZF4Kyrhp8PRrk9DhDmfQQioMYzQhpLpopxSSraZaIHoQup1Iy9P-GUKL3QPRGVyB6D2T_VYHUni8v0_3vOBKogm8HAdQdPQXIurgAowNfN-sm7VN4w_4vF8-eIg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29928242</pqid></control><display><type>article</type><title>Switchable polymer-based thin film coils as a power module for wireless neural interfaces</title><source>Elsevier</source><creator>Kim, S. ; Zoschke, K. ; Klein, M. ; Black, D. ; Buschick, K. ; Toepper, M. ; Tathireddy, P. ; Harrison, R. ; Oppermann, H. ; Solzbacher, F.</creator><creatorcontrib>Kim, S. ; Zoschke, K. ; Klein, M. ; Black, D. ; Buschick, K. ; Toepper, M. ; Tathireddy, P. ; Harrison, R. ; Oppermann, H. ; Solzbacher, F.</creatorcontrib><description>Reliable chronic operation of implantable medical devices such as the Utah Electrode Array (UEA) for neural interface requires elimination of transcutaneous wire connections for signal processing, powering and communication of the device. A wireless power source that allows integration with the UEA is therefore necessary. While (rechargeable) micro-batteries as well as biological micro-fuel cells are yet far from meeting the power density and lifetime requirements of an implantable neural interface device, inductive coupling between two coils is a promising approach to power such a device with highly restricted dimensions. The power receiving coils presented in this paper were designed to maximize the inductance and quality factor of the coils and microfabricated using polymer-based thin film technologies. A flexible configuration of stacked thin film coils allows parallel and serial switching, thereby allowing to tune the coil's resonance frequency. The electrical properties of the fabricated coils were characterized and their power transmission performance was investigated in laboratory condition.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2006.10.048</identifier><identifier>PMID: 18438447</identifier><language>eng</language><publisher>Switzerland: Elsevier B.V</publisher><subject>Inductive powering ; Micromachining ; Neural interface ; Thin film coil ; Utah Electrode Array (UEA)</subject><ispartof>Sensors and actuators. A. Physical., 2007-05, Vol.136 (1), p.467-474</ispartof><rights>2006 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-b8bc3a09cd0d620d984fc9887b42311ac8d4b9093bda1ca6c4c9908eb311e7293</citedby><cites>FETCH-LOGICAL-c449t-b8bc3a09cd0d620d984fc9887b42311ac8d4b9093bda1ca6c4c9908eb311e7293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18438447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, S.</creatorcontrib><creatorcontrib>Zoschke, K.</creatorcontrib><creatorcontrib>Klein, M.</creatorcontrib><creatorcontrib>Black, D.</creatorcontrib><creatorcontrib>Buschick, K.</creatorcontrib><creatorcontrib>Toepper, M.</creatorcontrib><creatorcontrib>Tathireddy, P.</creatorcontrib><creatorcontrib>Harrison, R.</creatorcontrib><creatorcontrib>Oppermann, H.</creatorcontrib><creatorcontrib>Solzbacher, F.</creatorcontrib><title>Switchable polymer-based thin film coils as a power module for wireless neural interfaces</title><title>Sensors and actuators. A. Physical.</title><addtitle>Sens Actuators A Phys</addtitle><description>Reliable chronic operation of implantable medical devices such as the Utah Electrode Array (UEA) for neural interface requires elimination of transcutaneous wire connections for signal processing, powering and communication of the device. A wireless power source that allows integration with the UEA is therefore necessary. While (rechargeable) micro-batteries as well as biological micro-fuel cells are yet far from meeting the power density and lifetime requirements of an implantable neural interface device, inductive coupling between two coils is a promising approach to power such a device with highly restricted dimensions. The power receiving coils presented in this paper were designed to maximize the inductance and quality factor of the coils and microfabricated using polymer-based thin film technologies. A flexible configuration of stacked thin film coils allows parallel and serial switching, thereby allowing to tune the coil's resonance frequency. The electrical properties of the fabricated coils were characterized and their power transmission performance was investigated in laboratory condition.</description><subject>Inductive powering</subject><subject>Micromachining</subject><subject>Neural interface</subject><subject>Thin film coil</subject><subject>Utah Electrode Array (UEA)</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kUtrGzEUhUVpaRy3PyCbolV34-jFjEShUELzgEAXbRZZCT3uxDKakSPNxOTfV8amTTYBgZDuuece7ofQGSUrSmh7vlmV0awYIW19r4iQ79CCyo43nLTqPVoQxUQjmOhO0GkpG0II5133EZ1QKbgUolug-9-7MLm1sRHwNsXnAXJjTQGPp3UYcR_igF0KsWBTT5XsIOMh-bnq-5TxLmSIUAoeYc4m4jBOkHvjoHxCH3oTC3w-3kt0d_nzz8V1c_vr6ubix23jhFBTY6V13BDlPPEtI15J0TslZWcF45QaJ72wiihuvaHOtE44pYgEW4vQMcWX6PvBdzvbAbyDcapB9DaHweRnnUzQrytjWOuH9KQZF4Kyrhp8PRrk9DhDmfQQioMYzQhpLpopxSSraZaIHoQup1Iy9P-GUKL3QPRGVyB6D2T_VYHUni8v0_3vOBKogm8HAdQdPQXIurgAowNfN-sm7VN4w_4vF8-eIg</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Kim, S.</creator><creator>Zoschke, K.</creator><creator>Klein, M.</creator><creator>Black, D.</creator><creator>Buschick, K.</creator><creator>Toepper, M.</creator><creator>Tathireddy, P.</creator><creator>Harrison, R.</creator><creator>Oppermann, H.</creator><creator>Solzbacher, F.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20070501</creationdate><title>Switchable polymer-based thin film coils as a power module for wireless neural interfaces</title><author>Kim, S. ; Zoschke, K. ; Klein, M. ; Black, D. ; Buschick, K. ; Toepper, M. ; Tathireddy, P. ; Harrison, R. ; Oppermann, H. ; Solzbacher, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-b8bc3a09cd0d620d984fc9887b42311ac8d4b9093bda1ca6c4c9908eb311e7293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Inductive powering</topic><topic>Micromachining</topic><topic>Neural interface</topic><topic>Thin film coil</topic><topic>Utah Electrode Array (UEA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, S.</creatorcontrib><creatorcontrib>Zoschke, K.</creatorcontrib><creatorcontrib>Klein, M.</creatorcontrib><creatorcontrib>Black, D.</creatorcontrib><creatorcontrib>Buschick, K.</creatorcontrib><creatorcontrib>Toepper, M.</creatorcontrib><creatorcontrib>Tathireddy, P.</creatorcontrib><creatorcontrib>Harrison, R.</creatorcontrib><creatorcontrib>Oppermann, H.</creatorcontrib><creatorcontrib>Solzbacher, F.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, S.</au><au>Zoschke, K.</au><au>Klein, M.</au><au>Black, D.</au><au>Buschick, K.</au><au>Toepper, M.</au><au>Tathireddy, P.</au><au>Harrison, R.</au><au>Oppermann, H.</au><au>Solzbacher, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Switchable polymer-based thin film coils as a power module for wireless neural interfaces</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><addtitle>Sens Actuators A Phys</addtitle><date>2007-05-01</date><risdate>2007</risdate><volume>136</volume><issue>1</issue><spage>467</spage><epage>474</epage><pages>467-474</pages><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>Reliable chronic operation of implantable medical devices such as the Utah Electrode Array (UEA) for neural interface requires elimination of transcutaneous wire connections for signal processing, powering and communication of the device. A wireless power source that allows integration with the UEA is therefore necessary. While (rechargeable) micro-batteries as well as biological micro-fuel cells are yet far from meeting the power density and lifetime requirements of an implantable neural interface device, inductive coupling between two coils is a promising approach to power such a device with highly restricted dimensions. The power receiving coils presented in this paper were designed to maximize the inductance and quality factor of the coils and microfabricated using polymer-based thin film technologies. A flexible configuration of stacked thin film coils allows parallel and serial switching, thereby allowing to tune the coil's resonance frequency. The electrical properties of the fabricated coils were characterized and their power transmission performance was investigated in laboratory condition.</abstract><cop>Switzerland</cop><pub>Elsevier B.V</pub><pmid>18438447</pmid><doi>10.1016/j.sna.2006.10.048</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-4247
ispartof Sensors and actuators. A. Physical., 2007-05, Vol.136 (1), p.467-474
issn 0924-4247
1873-3069
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2344127
source Elsevier
subjects Inductive powering
Micromachining
Neural interface
Thin film coil
Utah Electrode Array (UEA)
title Switchable polymer-based thin film coils as a power module for wireless neural interfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A48%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Switchable%20polymer-based%20thin%20film%20coils%20as%20a%20power%20module%20for%20wireless%20neural%20interfaces&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Kim,%20S.&rft.date=2007-05-01&rft.volume=136&rft.issue=1&rft.spage=467&rft.epage=474&rft.pages=467-474&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2006.10.048&rft_dat=%3Cproquest_pubme%3E29928242%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-b8bc3a09cd0d620d984fc9887b42311ac8d4b9093bda1ca6c4c9908eb311e7293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29928242&rft_id=info:pmid/18438447&rfr_iscdi=true