Loading…
Switchable polymer-based thin film coils as a power module for wireless neural interfaces
Reliable chronic operation of implantable medical devices such as the Utah Electrode Array (UEA) for neural interface requires elimination of transcutaneous wire connections for signal processing, powering and communication of the device. A wireless power source that allows integration with the UEA...
Saved in:
Published in: | Sensors and actuators. A. Physical. 2007-05, Vol.136 (1), p.467-474 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c449t-b8bc3a09cd0d620d984fc9887b42311ac8d4b9093bda1ca6c4c9908eb311e7293 |
---|---|
cites | cdi_FETCH-LOGICAL-c449t-b8bc3a09cd0d620d984fc9887b42311ac8d4b9093bda1ca6c4c9908eb311e7293 |
container_end_page | 474 |
container_issue | 1 |
container_start_page | 467 |
container_title | Sensors and actuators. A. Physical. |
container_volume | 136 |
creator | Kim, S. Zoschke, K. Klein, M. Black, D. Buschick, K. Toepper, M. Tathireddy, P. Harrison, R. Oppermann, H. Solzbacher, F. |
description | Reliable chronic operation of implantable medical devices such as the Utah Electrode Array (UEA) for neural interface requires elimination of transcutaneous wire connections for signal processing, powering and communication of the device. A wireless power source that allows integration with the UEA is therefore necessary. While (rechargeable) micro-batteries as well as biological micro-fuel cells are yet far from meeting the power density and lifetime requirements of an implantable neural interface device, inductive coupling between two coils is a promising approach to power such a device with highly restricted dimensions. The power receiving coils presented in this paper were designed to maximize the inductance and quality factor of the coils and microfabricated using polymer-based thin film technologies. A flexible configuration of stacked thin film coils allows parallel and serial switching, thereby allowing to tune the coil's resonance frequency. The electrical properties of the fabricated coils were characterized and their power transmission performance was investigated in laboratory condition. |
doi_str_mv | 10.1016/j.sna.2006.10.048 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2344127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424706006856</els_id><sourcerecordid>29928242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-b8bc3a09cd0d620d984fc9887b42311ac8d4b9093bda1ca6c4c9908eb311e7293</originalsourceid><addsrcrecordid>eNp9kUtrGzEUhUVpaRy3PyCbolV34-jFjEShUELzgEAXbRZZCT3uxDKakSPNxOTfV8amTTYBgZDuuece7ofQGSUrSmh7vlmV0awYIW19r4iQ79CCyo43nLTqPVoQxUQjmOhO0GkpG0II5133EZ1QKbgUolug-9-7MLm1sRHwNsXnAXJjTQGPp3UYcR_igF0KsWBTT5XsIOMh-bnq-5TxLmSIUAoeYc4m4jBOkHvjoHxCH3oTC3w-3kt0d_nzz8V1c_vr6ubix23jhFBTY6V13BDlPPEtI15J0TslZWcF45QaJ72wiihuvaHOtE44pYgEW4vQMcWX6PvBdzvbAbyDcapB9DaHweRnnUzQrytjWOuH9KQZF4Kyrhp8PRrk9DhDmfQQioMYzQhpLpopxSSraZaIHoQup1Iy9P-GUKL3QPRGVyB6D2T_VYHUni8v0_3vOBKogm8HAdQdPQXIurgAowNfN-sm7VN4w_4vF8-eIg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29928242</pqid></control><display><type>article</type><title>Switchable polymer-based thin film coils as a power module for wireless neural interfaces</title><source>Elsevier</source><creator>Kim, S. ; Zoschke, K. ; Klein, M. ; Black, D. ; Buschick, K. ; Toepper, M. ; Tathireddy, P. ; Harrison, R. ; Oppermann, H. ; Solzbacher, F.</creator><creatorcontrib>Kim, S. ; Zoschke, K. ; Klein, M. ; Black, D. ; Buschick, K. ; Toepper, M. ; Tathireddy, P. ; Harrison, R. ; Oppermann, H. ; Solzbacher, F.</creatorcontrib><description>Reliable chronic operation of implantable medical devices such as the Utah Electrode Array (UEA) for neural interface requires elimination of transcutaneous wire connections for signal processing, powering and communication of the device. A wireless power source that allows integration with the UEA is therefore necessary. While (rechargeable) micro-batteries as well as biological micro-fuel cells are yet far from meeting the power density and lifetime requirements of an implantable neural interface device, inductive coupling between two coils is a promising approach to power such a device with highly restricted dimensions. The power receiving coils presented in this paper were designed to maximize the inductance and quality factor of the coils and microfabricated using polymer-based thin film technologies. A flexible configuration of stacked thin film coils allows parallel and serial switching, thereby allowing to tune the coil's resonance frequency. The electrical properties of the fabricated coils were characterized and their power transmission performance was investigated in laboratory condition.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2006.10.048</identifier><identifier>PMID: 18438447</identifier><language>eng</language><publisher>Switzerland: Elsevier B.V</publisher><subject>Inductive powering ; Micromachining ; Neural interface ; Thin film coil ; Utah Electrode Array (UEA)</subject><ispartof>Sensors and actuators. A. Physical., 2007-05, Vol.136 (1), p.467-474</ispartof><rights>2006 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-b8bc3a09cd0d620d984fc9887b42311ac8d4b9093bda1ca6c4c9908eb311e7293</citedby><cites>FETCH-LOGICAL-c449t-b8bc3a09cd0d620d984fc9887b42311ac8d4b9093bda1ca6c4c9908eb311e7293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18438447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, S.</creatorcontrib><creatorcontrib>Zoschke, K.</creatorcontrib><creatorcontrib>Klein, M.</creatorcontrib><creatorcontrib>Black, D.</creatorcontrib><creatorcontrib>Buschick, K.</creatorcontrib><creatorcontrib>Toepper, M.</creatorcontrib><creatorcontrib>Tathireddy, P.</creatorcontrib><creatorcontrib>Harrison, R.</creatorcontrib><creatorcontrib>Oppermann, H.</creatorcontrib><creatorcontrib>Solzbacher, F.</creatorcontrib><title>Switchable polymer-based thin film coils as a power module for wireless neural interfaces</title><title>Sensors and actuators. A. Physical.</title><addtitle>Sens Actuators A Phys</addtitle><description>Reliable chronic operation of implantable medical devices such as the Utah Electrode Array (UEA) for neural interface requires elimination of transcutaneous wire connections for signal processing, powering and communication of the device. A wireless power source that allows integration with the UEA is therefore necessary. While (rechargeable) micro-batteries as well as biological micro-fuel cells are yet far from meeting the power density and lifetime requirements of an implantable neural interface device, inductive coupling between two coils is a promising approach to power such a device with highly restricted dimensions. The power receiving coils presented in this paper were designed to maximize the inductance and quality factor of the coils and microfabricated using polymer-based thin film technologies. A flexible configuration of stacked thin film coils allows parallel and serial switching, thereby allowing to tune the coil's resonance frequency. The electrical properties of the fabricated coils were characterized and their power transmission performance was investigated in laboratory condition.</description><subject>Inductive powering</subject><subject>Micromachining</subject><subject>Neural interface</subject><subject>Thin film coil</subject><subject>Utah Electrode Array (UEA)</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kUtrGzEUhUVpaRy3PyCbolV34-jFjEShUELzgEAXbRZZCT3uxDKakSPNxOTfV8amTTYBgZDuuece7ofQGSUrSmh7vlmV0awYIW19r4iQ79CCyo43nLTqPVoQxUQjmOhO0GkpG0II5133EZ1QKbgUolug-9-7MLm1sRHwNsXnAXJjTQGPp3UYcR_igF0KsWBTT5XsIOMh-bnq-5TxLmSIUAoeYc4m4jBOkHvjoHxCH3oTC3w-3kt0d_nzz8V1c_vr6ubix23jhFBTY6V13BDlPPEtI15J0TslZWcF45QaJ72wiihuvaHOtE44pYgEW4vQMcWX6PvBdzvbAbyDcapB9DaHweRnnUzQrytjWOuH9KQZF4Kyrhp8PRrk9DhDmfQQioMYzQhpLpopxSSraZaIHoQup1Iy9P-GUKL3QPRGVyB6D2T_VYHUni8v0_3vOBKogm8HAdQdPQXIurgAowNfN-sm7VN4w_4vF8-eIg</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Kim, S.</creator><creator>Zoschke, K.</creator><creator>Klein, M.</creator><creator>Black, D.</creator><creator>Buschick, K.</creator><creator>Toepper, M.</creator><creator>Tathireddy, P.</creator><creator>Harrison, R.</creator><creator>Oppermann, H.</creator><creator>Solzbacher, F.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20070501</creationdate><title>Switchable polymer-based thin film coils as a power module for wireless neural interfaces</title><author>Kim, S. ; Zoschke, K. ; Klein, M. ; Black, D. ; Buschick, K. ; Toepper, M. ; Tathireddy, P. ; Harrison, R. ; Oppermann, H. ; Solzbacher, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-b8bc3a09cd0d620d984fc9887b42311ac8d4b9093bda1ca6c4c9908eb311e7293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Inductive powering</topic><topic>Micromachining</topic><topic>Neural interface</topic><topic>Thin film coil</topic><topic>Utah Electrode Array (UEA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, S.</creatorcontrib><creatorcontrib>Zoschke, K.</creatorcontrib><creatorcontrib>Klein, M.</creatorcontrib><creatorcontrib>Black, D.</creatorcontrib><creatorcontrib>Buschick, K.</creatorcontrib><creatorcontrib>Toepper, M.</creatorcontrib><creatorcontrib>Tathireddy, P.</creatorcontrib><creatorcontrib>Harrison, R.</creatorcontrib><creatorcontrib>Oppermann, H.</creatorcontrib><creatorcontrib>Solzbacher, F.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, S.</au><au>Zoschke, K.</au><au>Klein, M.</au><au>Black, D.</au><au>Buschick, K.</au><au>Toepper, M.</au><au>Tathireddy, P.</au><au>Harrison, R.</au><au>Oppermann, H.</au><au>Solzbacher, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Switchable polymer-based thin film coils as a power module for wireless neural interfaces</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><addtitle>Sens Actuators A Phys</addtitle><date>2007-05-01</date><risdate>2007</risdate><volume>136</volume><issue>1</issue><spage>467</spage><epage>474</epage><pages>467-474</pages><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>Reliable chronic operation of implantable medical devices such as the Utah Electrode Array (UEA) for neural interface requires elimination of transcutaneous wire connections for signal processing, powering and communication of the device. A wireless power source that allows integration with the UEA is therefore necessary. While (rechargeable) micro-batteries as well as biological micro-fuel cells are yet far from meeting the power density and lifetime requirements of an implantable neural interface device, inductive coupling between two coils is a promising approach to power such a device with highly restricted dimensions. The power receiving coils presented in this paper were designed to maximize the inductance and quality factor of the coils and microfabricated using polymer-based thin film technologies. A flexible configuration of stacked thin film coils allows parallel and serial switching, thereby allowing to tune the coil's resonance frequency. The electrical properties of the fabricated coils were characterized and their power transmission performance was investigated in laboratory condition.</abstract><cop>Switzerland</cop><pub>Elsevier B.V</pub><pmid>18438447</pmid><doi>10.1016/j.sna.2006.10.048</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-4247 |
ispartof | Sensors and actuators. A. Physical., 2007-05, Vol.136 (1), p.467-474 |
issn | 0924-4247 1873-3069 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2344127 |
source | Elsevier |
subjects | Inductive powering Micromachining Neural interface Thin film coil Utah Electrode Array (UEA) |
title | Switchable polymer-based thin film coils as a power module for wireless neural interfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A48%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Switchable%20polymer-based%20thin%20film%20coils%20as%20a%20power%20module%20for%20wireless%20neural%20interfaces&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Kim,%20S.&rft.date=2007-05-01&rft.volume=136&rft.issue=1&rft.spage=467&rft.epage=474&rft.pages=467-474&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2006.10.048&rft_dat=%3Cproquest_pubme%3E29928242%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-b8bc3a09cd0d620d984fc9887b42311ac8d4b9093bda1ca6c4c9908eb311e7293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29928242&rft_id=info:pmid/18438447&rfr_iscdi=true |