Loading…
Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity
Dendritic cells (DC) are professional antigen-presenting cells that play a pivotal role in the induction of immunity. Ex vivo -generated, tumour antigen-loaded mature DC are currently exploited as cancer vaccines in clinical studies. However, antigen loading and maturation of DC directly in vivo wou...
Saved in:
Published in: | British journal of cancer 2006-10, Vol.95 (7), p.896-905 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c539t-b3d5467c18069406dcb4330b06ef33b20e15f249436ac5244f175bc8cd923e393 |
---|---|
cites | cdi_FETCH-LOGICAL-c539t-b3d5467c18069406dcb4330b06ef33b20e15f249436ac5244f175bc8cd923e393 |
container_end_page | 905 |
container_issue | 7 |
container_start_page | 896 |
container_title | British journal of cancer |
container_volume | 95 |
creator | den Brok, M H M G M Sutmuller, R P M Nierkens, S Bennink, E J Frielink, C Toonen, L W J Boerman, O C Figdor, C G Ruers, T J M Adema, G J |
description | Dendritic cells (DC) are professional antigen-presenting cells that play a pivotal role in the induction of immunity.
Ex vivo
-generated, tumour antigen-loaded mature DC are currently exploited as cancer vaccines in clinical studies. However, antigen loading and maturation of DC directly
in vivo
would greatly facilitate the application of DC-based vaccines. We formerly showed in murine models that radiofrequency-mediated tumour destruction can provide an antigen source for the
in vivo
induction of anti-tumour immunity, and we explored the role of DC herein. In this paper we evaluate radiofrequency and cryo ablation for their ability to provide an antigen source for DC and compare this with an
ex vivo
-loaded DC vaccine. The data obtained with model antigens demonstrate that upon tumour destruction by radiofrequency ablation, up to 7% of the total draining lymph node (LN) DC contained antigen, whereas only few DC from the conventional vaccine reached the LN. Interestingly, following cryo ablation the amount of antigen-loaded DC is almost doubled. Analysis of surface markers revealed that both destruction methods were able to induce DC maturation. Finally, we show that
in situ
tumour ablation can be efficiently combined with immune modulation by anti-CTLA-4 antibodies or regulatory T-cell depletion. These combination treatments protected mice from the outgrowth of tumour challenges, and led to
in vivo
enhancement of tumour-specific T-cell numbers, which produced more IFN-
γ
upon activation. Therefore,
in situ
tumour destruction in combination with immune modulation creates a unique, ‘
in situ
DC-vaccine’ that is readily applicable in the clinic without prior knowledge of tumour antigens. |
doi_str_mv | 10.1038/sj.bjc.6603341 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2360548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>762272379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-b3d5467c18069406dcb4330b06ef33b20e15f249436ac5244f175bc8cd923e393</originalsourceid><addsrcrecordid>eNp9kkuLFDEUhYMoTju6dacEQV1VT16VqmwEGcYHDLjRdUjl0ZOmKhmTqhn6b_iLTVFltwq6Cpf73XNvDgeA5xhtMaLtRd5vu73eco4oZfgB2OCakgq3pHkINgihpkKCoDPwJOd9KQVqm8fgDHNRMIY24MeVc157G0bYR2V82MHooLHBJD96DbXt-wxd7Pt4Pzd1OkSogoGpwNEl-32yQR-g6no1-higD1DHofNhKe_9eAP9MEzBwiGa6UiZSdtclEZfjdMQp7RQfjw8BY-c6rN9tr7n4NuHq6-Xn6rrLx8_X76_rnRNxVh11NSMNxq3iAuGuNEdoxR1iFtHaUeQxbUjTDDKla4JYw43dadbbQShlgp6Dt4turdTN1ijiwdJ9fI2-UGlg4zKyz87wd_IXbyThHJUs7YIvF0FUiw25FEOPs-GqWDjlGXDCWkIbeZVb_5L8lYUlOICvvoL3BdrQrFBEiJESyie1bYLpFPMOVl3vBkjOadC5r0sqZBrKsrAy99_esLXGBTg9QqorFXvkgra5xPXEswwYoW7WLhcWmFn0-m8f65-sUyUPEzJHiV_9X8C97jd0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>229982319</pqid></control><display><type>article</type><title>Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity</title><source>PubMed Central (Open Access)</source><creator>den Brok, M H M G M ; Sutmuller, R P M ; Nierkens, S ; Bennink, E J ; Frielink, C ; Toonen, L W J ; Boerman, O C ; Figdor, C G ; Ruers, T J M ; Adema, G J</creator><creatorcontrib>den Brok, M H M G M ; Sutmuller, R P M ; Nierkens, S ; Bennink, E J ; Frielink, C ; Toonen, L W J ; Boerman, O C ; Figdor, C G ; Ruers, T J M ; Adema, G J</creatorcontrib><description>Dendritic cells (DC) are professional antigen-presenting cells that play a pivotal role in the induction of immunity.
Ex vivo
-generated, tumour antigen-loaded mature DC are currently exploited as cancer vaccines in clinical studies. However, antigen loading and maturation of DC directly
in vivo
would greatly facilitate the application of DC-based vaccines. We formerly showed in murine models that radiofrequency-mediated tumour destruction can provide an antigen source for the
in vivo
induction of anti-tumour immunity, and we explored the role of DC herein. In this paper we evaluate radiofrequency and cryo ablation for their ability to provide an antigen source for DC and compare this with an
ex vivo
-loaded DC vaccine. The data obtained with model antigens demonstrate that upon tumour destruction by radiofrequency ablation, up to 7% of the total draining lymph node (LN) DC contained antigen, whereas only few DC from the conventional vaccine reached the LN. Interestingly, following cryo ablation the amount of antigen-loaded DC is almost doubled. Analysis of surface markers revealed that both destruction methods were able to induce DC maturation. Finally, we show that
in situ
tumour ablation can be efficiently combined with immune modulation by anti-CTLA-4 antibodies or regulatory T-cell depletion. These combination treatments protected mice from the outgrowth of tumour challenges, and led to
in vivo
enhancement of tumour-specific T-cell numbers, which produced more IFN-
γ
upon activation. Therefore,
in situ
tumour destruction in combination with immune modulation creates a unique, ‘
in situ
DC-vaccine’ that is readily applicable in the clinic without prior knowledge of tumour antigens.</description><identifier>ISSN: 0007-0920</identifier><identifier>EISSN: 1532-1827</identifier><identifier>DOI: 10.1038/sj.bjc.6603341</identifier><identifier>PMID: 16953240</identifier><identifier>CODEN: BJCAAI</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Antigens, Neoplasm - immunology ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Cancer Vaccines - immunology ; Catheter Ablation ; Cell Differentiation ; Cryosurgery ; Dendritic Cells - cytology ; Dendritic Cells - immunology ; Drug Resistance ; Epidemiology ; Female ; Flow Cytometry ; Immunotherapy ; Lymph Nodes - immunology ; Lymphocyte Depletion ; Medical sciences ; Mice ; Mice, Inbred C57BL ; Molecular Medicine ; Neoplasms, Experimental - immunology ; Neoplasms, Experimental - therapy ; Oncology ; Translational Therapeutics ; Tumors</subject><ispartof>British journal of cancer, 2006-10, Vol.95 (7), p.896-905</ispartof><rights>The Author(s) 2006</rights><rights>2006 INIST-CNRS</rights><rights>Copyright Nature Publishing Group Oct 9, 2006</rights><rights>Copyright © 2006 Cancer Research UK 2006 Cancer Research UK</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-b3d5467c18069406dcb4330b06ef33b20e15f249436ac5244f175bc8cd923e393</citedby><cites>FETCH-LOGICAL-c539t-b3d5467c18069406dcb4330b06ef33b20e15f249436ac5244f175bc8cd923e393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2360548/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2360548/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18214104$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16953240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>den Brok, M H M G M</creatorcontrib><creatorcontrib>Sutmuller, R P M</creatorcontrib><creatorcontrib>Nierkens, S</creatorcontrib><creatorcontrib>Bennink, E J</creatorcontrib><creatorcontrib>Frielink, C</creatorcontrib><creatorcontrib>Toonen, L W J</creatorcontrib><creatorcontrib>Boerman, O C</creatorcontrib><creatorcontrib>Figdor, C G</creatorcontrib><creatorcontrib>Ruers, T J M</creatorcontrib><creatorcontrib>Adema, G J</creatorcontrib><title>Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity</title><title>British journal of cancer</title><addtitle>Br J Cancer</addtitle><addtitle>Br J Cancer</addtitle><description>Dendritic cells (DC) are professional antigen-presenting cells that play a pivotal role in the induction of immunity.
Ex vivo
-generated, tumour antigen-loaded mature DC are currently exploited as cancer vaccines in clinical studies. However, antigen loading and maturation of DC directly
in vivo
would greatly facilitate the application of DC-based vaccines. We formerly showed in murine models that radiofrequency-mediated tumour destruction can provide an antigen source for the
in vivo
induction of anti-tumour immunity, and we explored the role of DC herein. In this paper we evaluate radiofrequency and cryo ablation for their ability to provide an antigen source for DC and compare this with an
ex vivo
-loaded DC vaccine. The data obtained with model antigens demonstrate that upon tumour destruction by radiofrequency ablation, up to 7% of the total draining lymph node (LN) DC contained antigen, whereas only few DC from the conventional vaccine reached the LN. Interestingly, following cryo ablation the amount of antigen-loaded DC is almost doubled. Analysis of surface markers revealed that both destruction methods were able to induce DC maturation. Finally, we show that
in situ
tumour ablation can be efficiently combined with immune modulation by anti-CTLA-4 antibodies or regulatory T-cell depletion. These combination treatments protected mice from the outgrowth of tumour challenges, and led to
in vivo
enhancement of tumour-specific T-cell numbers, which produced more IFN-
γ
upon activation. Therefore,
in situ
tumour destruction in combination with immune modulation creates a unique, ‘
in situ
DC-vaccine’ that is readily applicable in the clinic without prior knowledge of tumour antigens.</description><subject>Animals</subject><subject>Antigens, Neoplasm - immunology</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Cancer Vaccines - immunology</subject><subject>Catheter Ablation</subject><subject>Cell Differentiation</subject><subject>Cryosurgery</subject><subject>Dendritic Cells - cytology</subject><subject>Dendritic Cells - immunology</subject><subject>Drug Resistance</subject><subject>Epidemiology</subject><subject>Female</subject><subject>Flow Cytometry</subject><subject>Immunotherapy</subject><subject>Lymph Nodes - immunology</subject><subject>Lymphocyte Depletion</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Molecular Medicine</subject><subject>Neoplasms, Experimental - immunology</subject><subject>Neoplasms, Experimental - therapy</subject><subject>Oncology</subject><subject>Translational Therapeutics</subject><subject>Tumors</subject><issn>0007-0920</issn><issn>1532-1827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kkuLFDEUhYMoTju6dacEQV1VT16VqmwEGcYHDLjRdUjl0ZOmKhmTqhn6b_iLTVFltwq6Cpf73XNvDgeA5xhtMaLtRd5vu73eco4oZfgB2OCakgq3pHkINgihpkKCoDPwJOd9KQVqm8fgDHNRMIY24MeVc157G0bYR2V82MHooLHBJD96DbXt-wxd7Pt4Pzd1OkSogoGpwNEl-32yQR-g6no1-higD1DHofNhKe_9eAP9MEzBwiGa6UiZSdtclEZfjdMQp7RQfjw8BY-c6rN9tr7n4NuHq6-Xn6rrLx8_X76_rnRNxVh11NSMNxq3iAuGuNEdoxR1iFtHaUeQxbUjTDDKla4JYw43dadbbQShlgp6Dt4turdTN1ijiwdJ9fI2-UGlg4zKyz87wd_IXbyThHJUs7YIvF0FUiw25FEOPs-GqWDjlGXDCWkIbeZVb_5L8lYUlOICvvoL3BdrQrFBEiJESyie1bYLpFPMOVl3vBkjOadC5r0sqZBrKsrAy99_esLXGBTg9QqorFXvkgra5xPXEswwYoW7WLhcWmFn0-m8f65-sUyUPEzJHiV_9X8C97jd0g</recordid><startdate>20061009</startdate><enddate>20061009</enddate><creator>den Brok, M H M G M</creator><creator>Sutmuller, R P M</creator><creator>Nierkens, S</creator><creator>Bennink, E J</creator><creator>Frielink, C</creator><creator>Toonen, L W J</creator><creator>Boerman, O C</creator><creator>Figdor, C G</creator><creator>Ruers, T J M</creator><creator>Adema, G J</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7T5</scope><scope>5PM</scope></search><sort><creationdate>20061009</creationdate><title>Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity</title><author>den Brok, M H M G M ; Sutmuller, R P M ; Nierkens, S ; Bennink, E J ; Frielink, C ; Toonen, L W J ; Boerman, O C ; Figdor, C G ; Ruers, T J M ; Adema, G J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-b3d5467c18069406dcb4330b06ef33b20e15f249436ac5244f175bc8cd923e393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Antigens, Neoplasm - immunology</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Cancer Vaccines - immunology</topic><topic>Catheter Ablation</topic><topic>Cell Differentiation</topic><topic>Cryosurgery</topic><topic>Dendritic Cells - cytology</topic><topic>Dendritic Cells - immunology</topic><topic>Drug Resistance</topic><topic>Epidemiology</topic><topic>Female</topic><topic>Flow Cytometry</topic><topic>Immunotherapy</topic><topic>Lymph Nodes - immunology</topic><topic>Lymphocyte Depletion</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Molecular Medicine</topic><topic>Neoplasms, Experimental - immunology</topic><topic>Neoplasms, Experimental - therapy</topic><topic>Oncology</topic><topic>Translational Therapeutics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>den Brok, M H M G M</creatorcontrib><creatorcontrib>Sutmuller, R P M</creatorcontrib><creatorcontrib>Nierkens, S</creatorcontrib><creatorcontrib>Bennink, E J</creatorcontrib><creatorcontrib>Frielink, C</creatorcontrib><creatorcontrib>Toonen, L W J</creatorcontrib><creatorcontrib>Boerman, O C</creatorcontrib><creatorcontrib>Figdor, C G</creatorcontrib><creatorcontrib>Ruers, T J M</creatorcontrib><creatorcontrib>Adema, G J</creatorcontrib><collection>SpringerOpen</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>den Brok, M H M G M</au><au>Sutmuller, R P M</au><au>Nierkens, S</au><au>Bennink, E J</au><au>Frielink, C</au><au>Toonen, L W J</au><au>Boerman, O C</au><au>Figdor, C G</au><au>Ruers, T J M</au><au>Adema, G J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity</atitle><jtitle>British journal of cancer</jtitle><stitle>Br J Cancer</stitle><addtitle>Br J Cancer</addtitle><date>2006-10-09</date><risdate>2006</risdate><volume>95</volume><issue>7</issue><spage>896</spage><epage>905</epage><pages>896-905</pages><issn>0007-0920</issn><eissn>1532-1827</eissn><coden>BJCAAI</coden><abstract>Dendritic cells (DC) are professional antigen-presenting cells that play a pivotal role in the induction of immunity.
Ex vivo
-generated, tumour antigen-loaded mature DC are currently exploited as cancer vaccines in clinical studies. However, antigen loading and maturation of DC directly
in vivo
would greatly facilitate the application of DC-based vaccines. We formerly showed in murine models that radiofrequency-mediated tumour destruction can provide an antigen source for the
in vivo
induction of anti-tumour immunity, and we explored the role of DC herein. In this paper we evaluate radiofrequency and cryo ablation for their ability to provide an antigen source for DC and compare this with an
ex vivo
-loaded DC vaccine. The data obtained with model antigens demonstrate that upon tumour destruction by radiofrequency ablation, up to 7% of the total draining lymph node (LN) DC contained antigen, whereas only few DC from the conventional vaccine reached the LN. Interestingly, following cryo ablation the amount of antigen-loaded DC is almost doubled. Analysis of surface markers revealed that both destruction methods were able to induce DC maturation. Finally, we show that
in situ
tumour ablation can be efficiently combined with immune modulation by anti-CTLA-4 antibodies or regulatory T-cell depletion. These combination treatments protected mice from the outgrowth of tumour challenges, and led to
in vivo
enhancement of tumour-specific T-cell numbers, which produced more IFN-
γ
upon activation. Therefore,
in situ
tumour destruction in combination with immune modulation creates a unique, ‘
in situ
DC-vaccine’ that is readily applicable in the clinic without prior knowledge of tumour antigens.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>16953240</pmid><doi>10.1038/sj.bjc.6603341</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-0920 |
ispartof | British journal of cancer, 2006-10, Vol.95 (7), p.896-905 |
issn | 0007-0920 1532-1827 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2360548 |
source | PubMed Central (Open Access) |
subjects | Animals Antigens, Neoplasm - immunology Biological and medical sciences Biomedical and Life Sciences Biomedicine Cancer Research Cancer Vaccines - immunology Catheter Ablation Cell Differentiation Cryosurgery Dendritic Cells - cytology Dendritic Cells - immunology Drug Resistance Epidemiology Female Flow Cytometry Immunotherapy Lymph Nodes - immunology Lymphocyte Depletion Medical sciences Mice Mice, Inbred C57BL Molecular Medicine Neoplasms, Experimental - immunology Neoplasms, Experimental - therapy Oncology Translational Therapeutics Tumors |
title | Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20loading%20of%20dendritic%20cells%20following%20cryo%20and%20radiofrequency%20ablation%20in%20combination%20with%20immune%20modulation%20induces%20anti-tumour%20immunity&rft.jtitle=British%20journal%20of%20cancer&rft.au=den%20Brok,%20M%20H%20M%20G%20M&rft.date=2006-10-09&rft.volume=95&rft.issue=7&rft.spage=896&rft.epage=905&rft.pages=896-905&rft.issn=0007-0920&rft.eissn=1532-1827&rft.coden=BJCAAI&rft_id=info:doi/10.1038/sj.bjc.6603341&rft_dat=%3Cproquest_pubme%3E762272379%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c539t-b3d5467c18069406dcb4330b06ef33b20e15f249436ac5244f175bc8cd923e393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=229982319&rft_id=info:pmid/16953240&rfr_iscdi=true |