Loading…

Busulphan is active against neuroblastoma and medulloblastoma xenografts in athymic mice at clinically achievable plasma drug concentrations

Summary High-dose busulphan-containing chemotherapy regimens have shown high response rates in children with relapsed or refractory neuroblastoma, Ewing’s sarcoma and medulloblastoma. However, the anti-tumour activity of busulfan as a single agent remains to be defined, and this was evaluated in ath...

Full description

Saved in:
Bibliographic Details
Published in:British journal of cancer 1999-02, Vol.79 (5), p.787-792
Main Authors: Boland, I, Vassal, G, Morizet, J, Terrier-Lacombe, M-J, Valteau-Couanet, D, Kalifa, C, Hartmann, O, Gouyette, A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-3f76f68932d4f16ee72bfec2d73752575e5a45227a35585522a5ea8e498d0a0b3
cites cdi_FETCH-LOGICAL-c455t-3f76f68932d4f16ee72bfec2d73752575e5a45227a35585522a5ea8e498d0a0b3
container_end_page 792
container_issue 5
container_start_page 787
container_title British journal of cancer
container_volume 79
creator Boland, I
Vassal, G
Morizet, J
Terrier-Lacombe, M-J
Valteau-Couanet, D
Kalifa, C
Hartmann, O
Gouyette, A
description Summary High-dose busulphan-containing chemotherapy regimens have shown high response rates in children with relapsed or refractory neuroblastoma, Ewing’s sarcoma and medulloblastoma. However, the anti-tumour activity of busulfan as a single agent remains to be defined, and this was evaluated in athymic mice bearing advanced stage subcutaneous paediatric solid tumour xenografts. Because busulphan is highly insoluble in water, the use of several vehicles for enteral and parenteral administration was first investigated in terms of pharmacokinetics and toxicity. The highest bioavailability was obtained with busulphan in DMSO administered i.p. When busulphan was suspended in carboxymethylcellulose and given orally or i.p., the bioavailability was poor. Then, in the therapeutic experiments, busulphan in DMSO was administered i.p. on days 0 and 4. At the maximum tolerated total dose (50 mg kg –1 ), busulphan induced a significant tumour growth delay, ranging from 12 to 34 days in the three neuroblastomas evaluated and in one out of three medulloblastomas. At a dose level above the maximum tolerated dose, busulphan induced complete and partial tumour regressions. Busulphan was inactive in a peripheral primitive neuroectodermal tumour (PNET) xenograft. When busulphan pharmacokinetics in mice and humans were considered, the estimated systemic exposure at the therapeutically active dose in mice (113 μg h ml –1 ) was close to the mean total systemic exposure in children receiving high-dose busulphan (102.4 μg h ml –1 ). In conclusion, busulphan displayed a significant anti-tumour activity in neuroblastoma and medulloblastoma xenografts at plasma drug concentrations which can be achieved clinically in children receiving high-dose busulphan-containing regimens.
doi_str_mv 10.1038/sj.bjc.6690126
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2362679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10070870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-3f76f68932d4f16ee72bfec2d73752575e5a45227a35585522a5ea8e498d0a0b3</originalsourceid><addsrcrecordid>eNp1Uc-P1CAUJkbjzq5ePRoOXjtL6QDtxUQ36pps4kXP5JXSDg0DE6AT53_wj_aZTtz14IHw4Pvx4H2EvKnZtmZNe5vnbT-brZQdq7l8Rja1aHhVt1w9JxvGmKpYx9kVuc55xmPHWvWSXNUIYMU25NfHJS_-uIdAXaZgijtZChO4kAsNdkmx95BLPACFMNCDHRbvH-9-2hCnBGPJ1AUKZX8-OENxoUmhxrvgDHh_Rue9syfovaVHFKN0SMtETQzGhpKguBjyK_JiBJ_t68t-Q358_vT97r56-Pbl692Hh8rshChVMyo5yrZr-LAba2mt4v1oDR9UowQXSlgBO8G5gkaIVmAFwkJrd107MGB9c0Per77HpccfrS_w-pjcAdJZR3D6XyS4vZ7iSfNGcqk6NNiuBibFnJMd_2prpv_kovOsMRd9yQUFb592fEJfg0DCuwsBMk5sTBCMy488qZSoW6TdrrSMSJhs0nNcUsBh_a_zb5_bq6M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Busulphan is active against neuroblastoma and medulloblastoma xenografts in athymic mice at clinically achievable plasma drug concentrations</title><source>PubMed Central</source><creator>Boland, I ; Vassal, G ; Morizet, J ; Terrier-Lacombe, M-J ; Valteau-Couanet, D ; Kalifa, C ; Hartmann, O ; Gouyette, A</creator><creatorcontrib>Boland, I ; Vassal, G ; Morizet, J ; Terrier-Lacombe, M-J ; Valteau-Couanet, D ; Kalifa, C ; Hartmann, O ; Gouyette, A</creatorcontrib><description>Summary High-dose busulphan-containing chemotherapy regimens have shown high response rates in children with relapsed or refractory neuroblastoma, Ewing’s sarcoma and medulloblastoma. However, the anti-tumour activity of busulfan as a single agent remains to be defined, and this was evaluated in athymic mice bearing advanced stage subcutaneous paediatric solid tumour xenografts. Because busulphan is highly insoluble in water, the use of several vehicles for enteral and parenteral administration was first investigated in terms of pharmacokinetics and toxicity. The highest bioavailability was obtained with busulphan in DMSO administered i.p. When busulphan was suspended in carboxymethylcellulose and given orally or i.p., the bioavailability was poor. Then, in the therapeutic experiments, busulphan in DMSO was administered i.p. on days 0 and 4. At the maximum tolerated total dose (50 mg kg –1 ), busulphan induced a significant tumour growth delay, ranging from 12 to 34 days in the three neuroblastomas evaluated and in one out of three medulloblastomas. At a dose level above the maximum tolerated dose, busulphan induced complete and partial tumour regressions. Busulphan was inactive in a peripheral primitive neuroectodermal tumour (PNET) xenograft. When busulphan pharmacokinetics in mice and humans were considered, the estimated systemic exposure at the therapeutically active dose in mice (113 μg h ml –1 ) was close to the mean total systemic exposure in children receiving high-dose busulphan (102.4 μg h ml –1 ). In conclusion, busulphan displayed a significant anti-tumour activity in neuroblastoma and medulloblastoma xenografts at plasma drug concentrations which can be achieved clinically in children receiving high-dose busulphan-containing regimens.</description><identifier>ISSN: 0007-0920</identifier><identifier>EISSN: 1532-1827</identifier><identifier>DOI: 10.1038/sj.bjc.6690126</identifier><identifier>PMID: 10070870</identifier><identifier>CODEN: BJCAAI</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Administration, Oral ; Animals ; Antineoplastic agents ; Biological and medical sciences ; Biological Availability ; Biomedical and Life Sciences ; Biomedicine ; Brain Neoplasms - blood ; Brain Neoplasms - drug therapy ; Busulfan - administration &amp; dosage ; Busulfan - blood ; Busulfan - pharmacokinetics ; Busulfan - therapeutic use ; Cancer Research ; Carboxymethylcellulose Sodium ; Chemotherapy ; Dimethyl Sulfoxide ; Drug Resistance ; Epidemiology ; Female ; Humans ; Injections, Intraperitoneal ; Medical sciences ; Medulloblastoma - blood ; Medulloblastoma - drug therapy ; Mice ; Mice, Nude ; Molecular Medicine ; Neuroblastoma - blood ; Neuroblastoma - drug therapy ; Neuroectodermal Tumors, Primitive - blood ; Neuroectodermal Tumors, Primitive - drug therapy ; Oncology ; Pharmacology. Drug treatments ; Regular ; regular-article ; Solubility ; Transplantation, Heterologous ; Tumor Cells, Cultured</subject><ispartof>British journal of cancer, 1999-02, Vol.79 (5), p.787-792</ispartof><rights>The Author(s) 1999</rights><rights>1999 INIST-CNRS</rights><rights>Copyright © 1999 Cancer Research Campaign 1999 Cancer Research Campaign</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-3f76f68932d4f16ee72bfec2d73752575e5a45227a35585522a5ea8e498d0a0b3</citedby><cites>FETCH-LOGICAL-c455t-3f76f68932d4f16ee72bfec2d73752575e5a45227a35585522a5ea8e498d0a0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2362679/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2362679/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1677518$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10070870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boland, I</creatorcontrib><creatorcontrib>Vassal, G</creatorcontrib><creatorcontrib>Morizet, J</creatorcontrib><creatorcontrib>Terrier-Lacombe, M-J</creatorcontrib><creatorcontrib>Valteau-Couanet, D</creatorcontrib><creatorcontrib>Kalifa, C</creatorcontrib><creatorcontrib>Hartmann, O</creatorcontrib><creatorcontrib>Gouyette, A</creatorcontrib><title>Busulphan is active against neuroblastoma and medulloblastoma xenografts in athymic mice at clinically achievable plasma drug concentrations</title><title>British journal of cancer</title><addtitle>Br J Cancer</addtitle><addtitle>Br J Cancer</addtitle><description>Summary High-dose busulphan-containing chemotherapy regimens have shown high response rates in children with relapsed or refractory neuroblastoma, Ewing’s sarcoma and medulloblastoma. However, the anti-tumour activity of busulfan as a single agent remains to be defined, and this was evaluated in athymic mice bearing advanced stage subcutaneous paediatric solid tumour xenografts. Because busulphan is highly insoluble in water, the use of several vehicles for enteral and parenteral administration was first investigated in terms of pharmacokinetics and toxicity. The highest bioavailability was obtained with busulphan in DMSO administered i.p. When busulphan was suspended in carboxymethylcellulose and given orally or i.p., the bioavailability was poor. Then, in the therapeutic experiments, busulphan in DMSO was administered i.p. on days 0 and 4. At the maximum tolerated total dose (50 mg kg –1 ), busulphan induced a significant tumour growth delay, ranging from 12 to 34 days in the three neuroblastomas evaluated and in one out of three medulloblastomas. At a dose level above the maximum tolerated dose, busulphan induced complete and partial tumour regressions. Busulphan was inactive in a peripheral primitive neuroectodermal tumour (PNET) xenograft. When busulphan pharmacokinetics in mice and humans were considered, the estimated systemic exposure at the therapeutically active dose in mice (113 μg h ml –1 ) was close to the mean total systemic exposure in children receiving high-dose busulphan (102.4 μg h ml –1 ). In conclusion, busulphan displayed a significant anti-tumour activity in neuroblastoma and medulloblastoma xenografts at plasma drug concentrations which can be achieved clinically in children receiving high-dose busulphan-containing regimens.</description><subject>Administration, Oral</subject><subject>Animals</subject><subject>Antineoplastic agents</subject><subject>Biological and medical sciences</subject><subject>Biological Availability</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain Neoplasms - blood</subject><subject>Brain Neoplasms - drug therapy</subject><subject>Busulfan - administration &amp; dosage</subject><subject>Busulfan - blood</subject><subject>Busulfan - pharmacokinetics</subject><subject>Busulfan - therapeutic use</subject><subject>Cancer Research</subject><subject>Carboxymethylcellulose Sodium</subject><subject>Chemotherapy</subject><subject>Dimethyl Sulfoxide</subject><subject>Drug Resistance</subject><subject>Epidemiology</subject><subject>Female</subject><subject>Humans</subject><subject>Injections, Intraperitoneal</subject><subject>Medical sciences</subject><subject>Medulloblastoma - blood</subject><subject>Medulloblastoma - drug therapy</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Molecular Medicine</subject><subject>Neuroblastoma - blood</subject><subject>Neuroblastoma - drug therapy</subject><subject>Neuroectodermal Tumors, Primitive - blood</subject><subject>Neuroectodermal Tumors, Primitive - drug therapy</subject><subject>Oncology</subject><subject>Pharmacology. Drug treatments</subject><subject>Regular</subject><subject>regular-article</subject><subject>Solubility</subject><subject>Transplantation, Heterologous</subject><subject>Tumor Cells, Cultured</subject><issn>0007-0920</issn><issn>1532-1827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp1Uc-P1CAUJkbjzq5ePRoOXjtL6QDtxUQ36pps4kXP5JXSDg0DE6AT53_wj_aZTtz14IHw4Pvx4H2EvKnZtmZNe5vnbT-brZQdq7l8Rja1aHhVt1w9JxvGmKpYx9kVuc55xmPHWvWSXNUIYMU25NfHJS_-uIdAXaZgijtZChO4kAsNdkmx95BLPACFMNCDHRbvH-9-2hCnBGPJ1AUKZX8-OENxoUmhxrvgDHh_Rue9syfovaVHFKN0SMtETQzGhpKguBjyK_JiBJ_t68t-Q358_vT97r56-Pbl692Hh8rshChVMyo5yrZr-LAba2mt4v1oDR9UowQXSlgBO8G5gkaIVmAFwkJrd107MGB9c0Per77HpccfrS_w-pjcAdJZR3D6XyS4vZ7iSfNGcqk6NNiuBibFnJMd_2prpv_kovOsMRd9yQUFb592fEJfg0DCuwsBMk5sTBCMy488qZSoW6TdrrSMSJhs0nNcUsBh_a_zb5_bq6M</recordid><startdate>19990201</startdate><enddate>19990201</enddate><creator>Boland, I</creator><creator>Vassal, G</creator><creator>Morizet, J</creator><creator>Terrier-Lacombe, M-J</creator><creator>Valteau-Couanet, D</creator><creator>Kalifa, C</creator><creator>Hartmann, O</creator><creator>Gouyette, A</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>19990201</creationdate><title>Busulphan is active against neuroblastoma and medulloblastoma xenografts in athymic mice at clinically achievable plasma drug concentrations</title><author>Boland, I ; Vassal, G ; Morizet, J ; Terrier-Lacombe, M-J ; Valteau-Couanet, D ; Kalifa, C ; Hartmann, O ; Gouyette, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-3f76f68932d4f16ee72bfec2d73752575e5a45227a35585522a5ea8e498d0a0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Administration, Oral</topic><topic>Animals</topic><topic>Antineoplastic agents</topic><topic>Biological and medical sciences</topic><topic>Biological Availability</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain Neoplasms - blood</topic><topic>Brain Neoplasms - drug therapy</topic><topic>Busulfan - administration &amp; dosage</topic><topic>Busulfan - blood</topic><topic>Busulfan - pharmacokinetics</topic><topic>Busulfan - therapeutic use</topic><topic>Cancer Research</topic><topic>Carboxymethylcellulose Sodium</topic><topic>Chemotherapy</topic><topic>Dimethyl Sulfoxide</topic><topic>Drug Resistance</topic><topic>Epidemiology</topic><topic>Female</topic><topic>Humans</topic><topic>Injections, Intraperitoneal</topic><topic>Medical sciences</topic><topic>Medulloblastoma - blood</topic><topic>Medulloblastoma - drug therapy</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Molecular Medicine</topic><topic>Neuroblastoma - blood</topic><topic>Neuroblastoma - drug therapy</topic><topic>Neuroectodermal Tumors, Primitive - blood</topic><topic>Neuroectodermal Tumors, Primitive - drug therapy</topic><topic>Oncology</topic><topic>Pharmacology. Drug treatments</topic><topic>Regular</topic><topic>regular-article</topic><topic>Solubility</topic><topic>Transplantation, Heterologous</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boland, I</creatorcontrib><creatorcontrib>Vassal, G</creatorcontrib><creatorcontrib>Morizet, J</creatorcontrib><creatorcontrib>Terrier-Lacombe, M-J</creatorcontrib><creatorcontrib>Valteau-Couanet, D</creatorcontrib><creatorcontrib>Kalifa, C</creatorcontrib><creatorcontrib>Hartmann, O</creatorcontrib><creatorcontrib>Gouyette, A</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boland, I</au><au>Vassal, G</au><au>Morizet, J</au><au>Terrier-Lacombe, M-J</au><au>Valteau-Couanet, D</au><au>Kalifa, C</au><au>Hartmann, O</au><au>Gouyette, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Busulphan is active against neuroblastoma and medulloblastoma xenografts in athymic mice at clinically achievable plasma drug concentrations</atitle><jtitle>British journal of cancer</jtitle><stitle>Br J Cancer</stitle><addtitle>Br J Cancer</addtitle><date>1999-02-01</date><risdate>1999</risdate><volume>79</volume><issue>5</issue><spage>787</spage><epage>792</epage><pages>787-792</pages><issn>0007-0920</issn><eissn>1532-1827</eissn><coden>BJCAAI</coden><abstract>Summary High-dose busulphan-containing chemotherapy regimens have shown high response rates in children with relapsed or refractory neuroblastoma, Ewing’s sarcoma and medulloblastoma. However, the anti-tumour activity of busulfan as a single agent remains to be defined, and this was evaluated in athymic mice bearing advanced stage subcutaneous paediatric solid tumour xenografts. Because busulphan is highly insoluble in water, the use of several vehicles for enteral and parenteral administration was first investigated in terms of pharmacokinetics and toxicity. The highest bioavailability was obtained with busulphan in DMSO administered i.p. When busulphan was suspended in carboxymethylcellulose and given orally or i.p., the bioavailability was poor. Then, in the therapeutic experiments, busulphan in DMSO was administered i.p. on days 0 and 4. At the maximum tolerated total dose (50 mg kg –1 ), busulphan induced a significant tumour growth delay, ranging from 12 to 34 days in the three neuroblastomas evaluated and in one out of three medulloblastomas. At a dose level above the maximum tolerated dose, busulphan induced complete and partial tumour regressions. Busulphan was inactive in a peripheral primitive neuroectodermal tumour (PNET) xenograft. When busulphan pharmacokinetics in mice and humans were considered, the estimated systemic exposure at the therapeutically active dose in mice (113 μg h ml –1 ) was close to the mean total systemic exposure in children receiving high-dose busulphan (102.4 μg h ml –1 ). In conclusion, busulphan displayed a significant anti-tumour activity in neuroblastoma and medulloblastoma xenografts at plasma drug concentrations which can be achieved clinically in children receiving high-dose busulphan-containing regimens.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>10070870</pmid><doi>10.1038/sj.bjc.6690126</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-0920
ispartof British journal of cancer, 1999-02, Vol.79 (5), p.787-792
issn 0007-0920
1532-1827
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2362679
source PubMed Central
subjects Administration, Oral
Animals
Antineoplastic agents
Biological and medical sciences
Biological Availability
Biomedical and Life Sciences
Biomedicine
Brain Neoplasms - blood
Brain Neoplasms - drug therapy
Busulfan - administration & dosage
Busulfan - blood
Busulfan - pharmacokinetics
Busulfan - therapeutic use
Cancer Research
Carboxymethylcellulose Sodium
Chemotherapy
Dimethyl Sulfoxide
Drug Resistance
Epidemiology
Female
Humans
Injections, Intraperitoneal
Medical sciences
Medulloblastoma - blood
Medulloblastoma - drug therapy
Mice
Mice, Nude
Molecular Medicine
Neuroblastoma - blood
Neuroblastoma - drug therapy
Neuroectodermal Tumors, Primitive - blood
Neuroectodermal Tumors, Primitive - drug therapy
Oncology
Pharmacology. Drug treatments
Regular
regular-article
Solubility
Transplantation, Heterologous
Tumor Cells, Cultured
title Busulphan is active against neuroblastoma and medulloblastoma xenografts in athymic mice at clinically achievable plasma drug concentrations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Busulphan%20is%20active%20against%20neuroblastoma%20and%20medulloblastoma%20xenografts%20in%20athymic%20mice%20at%20clinically%20achievable%20plasma%20drug%20concentrations&rft.jtitle=British%20journal%20of%20cancer&rft.au=Boland,%20I&rft.date=1999-02-01&rft.volume=79&rft.issue=5&rft.spage=787&rft.epage=792&rft.pages=787-792&rft.issn=0007-0920&rft.eissn=1532-1827&rft.coden=BJCAAI&rft_id=info:doi/10.1038/sj.bjc.6690126&rft_dat=%3Cpubmed_cross%3E10070870%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-3f76f68932d4f16ee72bfec2d73752575e5a45227a35585522a5ea8e498d0a0b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/10070870&rfr_iscdi=true