Loading…

Control of the allosteric equilibrium of hemoglobin by cross‐linking agents

The kinetics of ligand rebinding have been studied for modified or cross‐linked hemoglobins (Hbs). Several compounds were tested that interact with α Val 1 or involve a cross‐link between α Val 1 and α Lys 99 of the opposite dimer. By varying the length of certain cross‐linking molecules, a wide ran...

Full description

Saved in:
Bibliographic Details
Published in:Protein science 2002-06, Vol.11 (6), p.1376-1383
Main Authors: Marden, Michael C., Cabanes‐Macheteau, Marion, Babes, Alexandru, Kiger, Laurent, Griffon, Nathalie, Poyart, Claude, Boyiri, Telih, Safo, Martin K., Abraham, Donald J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4826-4fcfab84064ebd427665e38fb3ecc90d88a8ea74e0b51dc150f7e5900a8d6cd63
cites cdi_FETCH-LOGICAL-c4826-4fcfab84064ebd427665e38fb3ecc90d88a8ea74e0b51dc150f7e5900a8d6cd63
container_end_page 1383
container_issue 6
container_start_page 1376
container_title Protein science
container_volume 11
creator Marden, Michael C.
Cabanes‐Macheteau, Marion
Babes, Alexandru
Kiger, Laurent
Griffon, Nathalie
Poyart, Claude
Boyiri, Telih
Safo, Martin K.
Abraham, Donald J.
description The kinetics of ligand rebinding have been studied for modified or cross‐linked hemoglobins (Hbs). Several compounds were tested that interact with α Val 1 or involve a cross‐link between α Val 1 and α Lys 99 of the opposite dimer. By varying the length of certain cross‐linking molecules, a wide range in the allosteric equilibrium could be obtained. Several of the mono‐aldehyde modified Hbs show a shift toward the high affinity conformation of Hb. At the other extreme, for certain di‐aldehyde cross‐linked Hbs, the CO kinetics are typical of binding to deoxy Hb, even at low photodissociation levels, with which the dominant photoproduct is the triply liganded species; in these cases the hemoglobin does not switch from the low to high affinity state until after the fourth ligand is bound. Although each modified Hb shows only two distinct rates, the kinetic data as a function of dissociation level cannot be simulated with a simple two‐state model. A critical length is observed for the maximum shift toward the low affinity T‐state. Longer or shorter lengths of the cross‐linker yielded more high affinity R‐state. Unlike native Hb, which is in equilibrium with free dimers, the cross‐linked Hbs maintain the fraction slow kinetics, which is unique to Hb tetramers, even at 0.5 μM (total heme). Addition of HbCN to unmodified HbCO solutions results in dimer exchange, which decreases the relative fraction of slow bimolecular kinetics; the cross‐linked Hbs did not show such an effect, indicating that they do not participate in dimer exchange.
doi_str_mv 10.1110/ps.4880102
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2373633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71706784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4826-4fcfab84064ebd427665e38fb3ecc90d88a8ea74e0b51dc150f7e5900a8d6cd63</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhi1UBMvChQeocuoBKdtx7HWcS6VqRQEJRFVRqTfLcSa7BicOdkK1Nx6hz8iTENhVKZeeRpr_0__P_IQcU5hRSuFzF2dcSqCQ7ZAJ5aJIZSF-fSATKARNJRNynxzEeAsAnGZsj-zTDDLKmZiQq4Vv--Bd4uukX2GinfOxx2BNgveDdbYMdmhe1BU2ful8adukXCcm-BifHv84297ZdpnoJbZ9PCS7tXYRj7ZzSn5-O71ZnKeX12cXi6-XqeEyEymvTa1LyUFwLCue5ULMkcm6ZGhMAZWUWqLOOUI5p5Whc6hznBcAWlbCVIJNyZeNbzeUDVZmzA7aqS7YRoe18tqq90prV2rpH1TGciYYGw0-bQ2Cvx8w9qqx0aBzukU_RJXTHEQu-QiebMDXhwPWf0MoqJf2VRfVtv0R_vjvWW_otu4RoBvgt3W4_o-V-v7jelyxXLBnYzCSVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71706784</pqid></control><display><type>article</type><title>Control of the allosteric equilibrium of hemoglobin by cross‐linking agents</title><source>Wiley</source><source>PubMed Central</source><creator>Marden, Michael C. ; Cabanes‐Macheteau, Marion ; Babes, Alexandru ; Kiger, Laurent ; Griffon, Nathalie ; Poyart, Claude ; Boyiri, Telih ; Safo, Martin K. ; Abraham, Donald J.</creator><creatorcontrib>Marden, Michael C. ; Cabanes‐Macheteau, Marion ; Babes, Alexandru ; Kiger, Laurent ; Griffon, Nathalie ; Poyart, Claude ; Boyiri, Telih ; Safo, Martin K. ; Abraham, Donald J.</creatorcontrib><description>The kinetics of ligand rebinding have been studied for modified or cross‐linked hemoglobins (Hbs). Several compounds were tested that interact with α Val 1 or involve a cross‐link between α Val 1 and α Lys 99 of the opposite dimer. By varying the length of certain cross‐linking molecules, a wide range in the allosteric equilibrium could be obtained. Several of the mono‐aldehyde modified Hbs show a shift toward the high affinity conformation of Hb. At the other extreme, for certain di‐aldehyde cross‐linked Hbs, the CO kinetics are typical of binding to deoxy Hb, even at low photodissociation levels, with which the dominant photoproduct is the triply liganded species; in these cases the hemoglobin does not switch from the low to high affinity state until after the fourth ligand is bound. Although each modified Hb shows only two distinct rates, the kinetic data as a function of dissociation level cannot be simulated with a simple two‐state model. A critical length is observed for the maximum shift toward the low affinity T‐state. Longer or shorter lengths of the cross‐linker yielded more high affinity R‐state. Unlike native Hb, which is in equilibrium with free dimers, the cross‐linked Hbs maintain the fraction slow kinetics, which is unique to Hb tetramers, even at 0.5 μM (total heme). Addition of HbCN to unmodified HbCO solutions results in dimer exchange, which decreases the relative fraction of slow bimolecular kinetics; the cross‐linked Hbs did not show such an effect, indicating that they do not participate in dimer exchange.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1110/ps.4880102</identifier><identifier>PMID: 12021436</identifier><language>eng</language><publisher>Bristol: Cold Spring Harbor Laboratory Press</publisher><subject>Aldehydes - pharmacology ; Allosteric Regulation - drug effects ; allostery ; Carbon Monoxide - metabolism ; Cross-Linking Reagents - pharmacology ; cross‐link ; Dimerization ; effector ; Fluorescent Dyes ; Hemoglobin ; Hemoglobin A - chemistry ; Hemoglobin A - metabolism ; Humans ; Kinetics ; ligand kinetics ; Oxygen - metabolism ; Protein Conformation - drug effects ; Structure-Activity Relationship</subject><ispartof>Protein science, 2002-06, Vol.11 (6), p.1376-1383</ispartof><rights>Copyright © 2002 The Protein Society</rights><rights>Copyright © Copyright 2002 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4826-4fcfab84064ebd427665e38fb3ecc90d88a8ea74e0b51dc150f7e5900a8d6cd63</citedby><cites>FETCH-LOGICAL-c4826-4fcfab84064ebd427665e38fb3ecc90d88a8ea74e0b51dc150f7e5900a8d6cd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2373633/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2373633/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12021436$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marden, Michael C.</creatorcontrib><creatorcontrib>Cabanes‐Macheteau, Marion</creatorcontrib><creatorcontrib>Babes, Alexandru</creatorcontrib><creatorcontrib>Kiger, Laurent</creatorcontrib><creatorcontrib>Griffon, Nathalie</creatorcontrib><creatorcontrib>Poyart, Claude</creatorcontrib><creatorcontrib>Boyiri, Telih</creatorcontrib><creatorcontrib>Safo, Martin K.</creatorcontrib><creatorcontrib>Abraham, Donald J.</creatorcontrib><title>Control of the allosteric equilibrium of hemoglobin by cross‐linking agents</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>The kinetics of ligand rebinding have been studied for modified or cross‐linked hemoglobins (Hbs). Several compounds were tested that interact with α Val 1 or involve a cross‐link between α Val 1 and α Lys 99 of the opposite dimer. By varying the length of certain cross‐linking molecules, a wide range in the allosteric equilibrium could be obtained. Several of the mono‐aldehyde modified Hbs show a shift toward the high affinity conformation of Hb. At the other extreme, for certain di‐aldehyde cross‐linked Hbs, the CO kinetics are typical of binding to deoxy Hb, even at low photodissociation levels, with which the dominant photoproduct is the triply liganded species; in these cases the hemoglobin does not switch from the low to high affinity state until after the fourth ligand is bound. Although each modified Hb shows only two distinct rates, the kinetic data as a function of dissociation level cannot be simulated with a simple two‐state model. A critical length is observed for the maximum shift toward the low affinity T‐state. Longer or shorter lengths of the cross‐linker yielded more high affinity R‐state. Unlike native Hb, which is in equilibrium with free dimers, the cross‐linked Hbs maintain the fraction slow kinetics, which is unique to Hb tetramers, even at 0.5 μM (total heme). Addition of HbCN to unmodified HbCO solutions results in dimer exchange, which decreases the relative fraction of slow bimolecular kinetics; the cross‐linked Hbs did not show such an effect, indicating that they do not participate in dimer exchange.</description><subject>Aldehydes - pharmacology</subject><subject>Allosteric Regulation - drug effects</subject><subject>allostery</subject><subject>Carbon Monoxide - metabolism</subject><subject>Cross-Linking Reagents - pharmacology</subject><subject>cross‐link</subject><subject>Dimerization</subject><subject>effector</subject><subject>Fluorescent Dyes</subject><subject>Hemoglobin</subject><subject>Hemoglobin A - chemistry</subject><subject>Hemoglobin A - metabolism</subject><subject>Humans</subject><subject>Kinetics</subject><subject>ligand kinetics</subject><subject>Oxygen - metabolism</subject><subject>Protein Conformation - drug effects</subject><subject>Structure-Activity Relationship</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp9kMFO3DAQhi1UBMvChQeocuoBKdtx7HWcS6VqRQEJRFVRqTfLcSa7BicOdkK1Nx6hz8iTENhVKZeeRpr_0__P_IQcU5hRSuFzF2dcSqCQ7ZAJ5aJIZSF-fSATKARNJRNynxzEeAsAnGZsj-zTDDLKmZiQq4Vv--Bd4uukX2GinfOxx2BNgveDdbYMdmhe1BU2ful8adukXCcm-BifHv84297ZdpnoJbZ9PCS7tXYRj7ZzSn5-O71ZnKeX12cXi6-XqeEyEymvTa1LyUFwLCue5ULMkcm6ZGhMAZWUWqLOOUI5p5Whc6hznBcAWlbCVIJNyZeNbzeUDVZmzA7aqS7YRoe18tqq90prV2rpH1TGciYYGw0-bQ2Cvx8w9qqx0aBzukU_RJXTHEQu-QiebMDXhwPWf0MoqJf2VRfVtv0R_vjvWW_otu4RoBvgt3W4_o-V-v7jelyxXLBnYzCSVA</recordid><startdate>200206</startdate><enddate>200206</enddate><creator>Marden, Michael C.</creator><creator>Cabanes‐Macheteau, Marion</creator><creator>Babes, Alexandru</creator><creator>Kiger, Laurent</creator><creator>Griffon, Nathalie</creator><creator>Poyart, Claude</creator><creator>Boyiri, Telih</creator><creator>Safo, Martin K.</creator><creator>Abraham, Donald J.</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200206</creationdate><title>Control of the allosteric equilibrium of hemoglobin by cross‐linking agents</title><author>Marden, Michael C. ; Cabanes‐Macheteau, Marion ; Babes, Alexandru ; Kiger, Laurent ; Griffon, Nathalie ; Poyart, Claude ; Boyiri, Telih ; Safo, Martin K. ; Abraham, Donald J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4826-4fcfab84064ebd427665e38fb3ecc90d88a8ea74e0b51dc150f7e5900a8d6cd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Aldehydes - pharmacology</topic><topic>Allosteric Regulation - drug effects</topic><topic>allostery</topic><topic>Carbon Monoxide - metabolism</topic><topic>Cross-Linking Reagents - pharmacology</topic><topic>cross‐link</topic><topic>Dimerization</topic><topic>effector</topic><topic>Fluorescent Dyes</topic><topic>Hemoglobin</topic><topic>Hemoglobin A - chemistry</topic><topic>Hemoglobin A - metabolism</topic><topic>Humans</topic><topic>Kinetics</topic><topic>ligand kinetics</topic><topic>Oxygen - metabolism</topic><topic>Protein Conformation - drug effects</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marden, Michael C.</creatorcontrib><creatorcontrib>Cabanes‐Macheteau, Marion</creatorcontrib><creatorcontrib>Babes, Alexandru</creatorcontrib><creatorcontrib>Kiger, Laurent</creatorcontrib><creatorcontrib>Griffon, Nathalie</creatorcontrib><creatorcontrib>Poyart, Claude</creatorcontrib><creatorcontrib>Boyiri, Telih</creatorcontrib><creatorcontrib>Safo, Martin K.</creatorcontrib><creatorcontrib>Abraham, Donald J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marden, Michael C.</au><au>Cabanes‐Macheteau, Marion</au><au>Babes, Alexandru</au><au>Kiger, Laurent</au><au>Griffon, Nathalie</au><au>Poyart, Claude</au><au>Boyiri, Telih</au><au>Safo, Martin K.</au><au>Abraham, Donald J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of the allosteric equilibrium of hemoglobin by cross‐linking agents</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2002-06</date><risdate>2002</risdate><volume>11</volume><issue>6</issue><spage>1376</spage><epage>1383</epage><pages>1376-1383</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>The kinetics of ligand rebinding have been studied for modified or cross‐linked hemoglobins (Hbs). Several compounds were tested that interact with α Val 1 or involve a cross‐link between α Val 1 and α Lys 99 of the opposite dimer. By varying the length of certain cross‐linking molecules, a wide range in the allosteric equilibrium could be obtained. Several of the mono‐aldehyde modified Hbs show a shift toward the high affinity conformation of Hb. At the other extreme, for certain di‐aldehyde cross‐linked Hbs, the CO kinetics are typical of binding to deoxy Hb, even at low photodissociation levels, with which the dominant photoproduct is the triply liganded species; in these cases the hemoglobin does not switch from the low to high affinity state until after the fourth ligand is bound. Although each modified Hb shows only two distinct rates, the kinetic data as a function of dissociation level cannot be simulated with a simple two‐state model. A critical length is observed for the maximum shift toward the low affinity T‐state. Longer or shorter lengths of the cross‐linker yielded more high affinity R‐state. Unlike native Hb, which is in equilibrium with free dimers, the cross‐linked Hbs maintain the fraction slow kinetics, which is unique to Hb tetramers, even at 0.5 μM (total heme). Addition of HbCN to unmodified HbCO solutions results in dimer exchange, which decreases the relative fraction of slow bimolecular kinetics; the cross‐linked Hbs did not show such an effect, indicating that they do not participate in dimer exchange.</abstract><cop>Bristol</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>12021436</pmid><doi>10.1110/ps.4880102</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2002-06, Vol.11 (6), p.1376-1383
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2373633
source Wiley; PubMed Central
subjects Aldehydes - pharmacology
Allosteric Regulation - drug effects
allostery
Carbon Monoxide - metabolism
Cross-Linking Reagents - pharmacology
cross‐link
Dimerization
effector
Fluorescent Dyes
Hemoglobin
Hemoglobin A - chemistry
Hemoglobin A - metabolism
Humans
Kinetics
ligand kinetics
Oxygen - metabolism
Protein Conformation - drug effects
Structure-Activity Relationship
title Control of the allosteric equilibrium of hemoglobin by cross‐linking agents
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A08%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20the%20allosteric%20equilibrium%20of%20hemoglobin%20by%20cross%E2%80%90linking%20agents&rft.jtitle=Protein%20science&rft.au=Marden,%20Michael%20C.&rft.date=2002-06&rft.volume=11&rft.issue=6&rft.spage=1376&rft.epage=1383&rft.pages=1376-1383&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1110/ps.4880102&rft_dat=%3Cproquest_pubme%3E71706784%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4826-4fcfab84064ebd427665e38fb3ecc90d88a8ea74e0b51dc150f7e5900a8d6cd63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=71706784&rft_id=info:pmid/12021436&rfr_iscdi=true