Loading…

Overexpression of the p53-inducible brain-specific angiogenesis inhibitor 1 suppresses efficiently tumour angiogenesis

The brain-specific angiogenesis inhibitor 1 gene has been isolated in an attempt to find fragments with p53 “functional” binding sites. As reported herein and by others, brain-specific angiogenesis inhibitor 1 expression is present in some normal tissues, but is reduced or lost in tumour tissues. Su...

Full description

Saved in:
Bibliographic Details
Published in:British journal of cancer 2002-02, Vol.86 (3), p.490-496
Main Authors: Duda, D G, Sunamura, M, Lozonschi, L, Yokoyama, T, Yatsuoka, T, Motoi, F, Horii, A, Tani, K, Asano, S, Nakamura, Y, Matsuno, S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The brain-specific angiogenesis inhibitor 1 gene has been isolated in an attempt to find fragments with p53 “functional” binding sites. As reported herein and by others, brain-specific angiogenesis inhibitor 1 expression is present in some normal tissues, but is reduced or lost in tumour tissues. Such data and its particular structure prompted the hypothesis that brain-specific angiogenesis inhibitor 1 may act as a mediator in the local angiogenesis balance. We herein demonstrate that brain-specific angiogenesis inhibitor 1 over-expression suppresses tumour angiogenesis, delaying significantly the human tumour growth in immunodeficient mice. The inhibitory effect of brain-specific angiogenesis inhibitor 1 was documented using our intravital microscopy system, strongly implicating brain-specific angiogenesis inhibitor 1 as a mediator in the control of tumour angiogenesis. In contrast, in vitro tumour cell proliferation was not inhibited by brain-specific angiogenesis inhibitor 1 transfection, whereas some level of cytotoxicity was assessed for endothelial cells. Immunohistochemical analysis of tumour samples confirmed a reduction in the microvessel density index in brain-specific angiogenesis inhibitor 1-overexpressing tumours. At messenger level, moderate changes could be detected, involving the down-regulation of vascular endothelial growth factor and collagenase-1 expression. Furthermore, brain-specific angiogenesis inhibitor 1 expression that was lost in a selection of human cancer cell lines could be restored by wild-type p53 adenoviral transfection. Brain-specific angiogenesis inhibitor 1 should be considered for gene therapy and development of efficient drugs based on endogenous antiangiogenic molecules.
ISSN:0007-0920
1532-1827
DOI:10.1038/sj.bjc.6600067