Loading…

Hydrodynamic metamaterials: Microfabricated arrays to steer, refract, and focus streams of biomaterials

We show that it is possible to direct particles entrained in a fluid along trajectories much like rays of light in classical optics. A microstructured, asymmetric post array forms the core hydrodynamic element and is used as a building block to construct microfluidic metamaterials and to demonstrate...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2008-05, Vol.105 (21), p.7434-7438
Main Authors: Morton, Keith J, Loutherback, Kevin, Inglis, David W, Tsui, Ophelia K, Sturm, James C, Chou, Stephen Y, Austin, Robert H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c587t-274e76f7b4746c53c2fa2b43b2246a2ceb5b4667e9799b66ec379543d50dbc4c3
cites cdi_FETCH-LOGICAL-c587t-274e76f7b4746c53c2fa2b43b2246a2ceb5b4667e9799b66ec379543d50dbc4c3
container_end_page 7438
container_issue 21
container_start_page 7434
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 105
creator Morton, Keith J
Loutherback, Kevin
Inglis, David W
Tsui, Ophelia K
Sturm, James C
Chou, Stephen Y
Austin, Robert H
description We show that it is possible to direct particles entrained in a fluid along trajectories much like rays of light in classical optics. A microstructured, asymmetric post array forms the core hydrodynamic element and is used as a building block to construct microfluidic metamaterials and to demonstrate refractive, focusing, and dispersive pathways for flowing beads and cells. The core element is based on the concept of deterministic lateral displacement where particles choose different paths through the asymmetric array based on their size: Particles larger than a critical size are displaced laterally at each row by a post and move along the asymmetric axis at an angle to the flow, while smaller particles move along streamline paths. We create compound elements with complex particle handling modes by tiling this core element using multiple transformation operations; we show that particle trajectories can be bent at an interface between two elements and that particles can be focused into hydrodynamic jets by using a single inlet port. Although particles propagate through these elements in a way that strongly resembles light rays propagating through optical elements, there are unique differences in the paths of our particles as compared with photons. The unusual aspects of these modular, microfluidic metamaterials form a rich design toolkit for mixing, separating, and analyzing cells and functional beads on-chip.
doi_str_mv 10.1073/pnas.0712398105
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2396696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25462615</jstor_id><sourcerecordid>25462615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-274e76f7b4746c53c2fa2b43b2246a2ceb5b4667e9799b66ec379543d50dbc4c3</originalsourceid><addsrcrecordid>eNp9ks-PEyEUx4nRuN3q2ZNK9mA87OwCw4_Bg4nZqGuyxoPumQADlWZmqMAY-99L06ZVD55IeJ_3fbzvFwCeYXSFkWivN5POV0hg0soOI_YALDCSuOFUoodggRARTUcJPQPnOa8RQpJ16DE4wx2VTBK0AKvbbZ9iv530GCwcXdGjLi4FPeQ38HOwKXptUrD1soc6Jb3NsESYi3PpEibnk7blEuqphz7aOddKcnrMMHpoQjyKPQGPfD3c08O5BPcf3n-7uW3uvnz8dPPurrGsE6UhgjrBvTBUUG5Za4nXxNDWEEK5JtYZZijnwkkhpeHc2VZIRtueod5YatsleLvX3cxmdL11U0l6UJsURp22Kuqg_q5M4btaxZ-qOsi55FXg1UEgxR-zy0WNIVs3DHpycc5KoDq5-l3Bi3_AdZzTVJdTBOGWYl6pJbjeQ9XInKtdx5dgpHYJql2C6pRg7Xjx5wIn_hBZBV4egF3nSY4pgpWgLa3E6_8Tys_DUNyvUtHne3SdS0xHljDKCcfsNMzrqPQqhazuv-7Wq18JIVpt-A3Ko8P_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201341612</pqid></control><display><type>article</type><title>Hydrodynamic metamaterials: Microfabricated arrays to steer, refract, and focus streams of biomaterials</title><source>PubMed (Medline)</source><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><creator>Morton, Keith J ; Loutherback, Kevin ; Inglis, David W ; Tsui, Ophelia K ; Sturm, James C ; Chou, Stephen Y ; Austin, Robert H</creator><creatorcontrib>Morton, Keith J ; Loutherback, Kevin ; Inglis, David W ; Tsui, Ophelia K ; Sturm, James C ; Chou, Stephen Y ; Austin, Robert H</creatorcontrib><description>We show that it is possible to direct particles entrained in a fluid along trajectories much like rays of light in classical optics. A microstructured, asymmetric post array forms the core hydrodynamic element and is used as a building block to construct microfluidic metamaterials and to demonstrate refractive, focusing, and dispersive pathways for flowing beads and cells. The core element is based on the concept of deterministic lateral displacement where particles choose different paths through the asymmetric array based on their size: Particles larger than a critical size are displaced laterally at each row by a post and move along the asymmetric axis at an angle to the flow, while smaller particles move along streamline paths. We create compound elements with complex particle handling modes by tiling this core element using multiple transformation operations; we show that particle trajectories can be bent at an interface between two elements and that particles can be focused into hydrodynamic jets by using a single inlet port. Although particles propagate through these elements in a way that strongly resembles light rays propagating through optical elements, there are unique differences in the paths of our particles as compared with photons. The unusual aspects of these modular, microfluidic metamaterials form a rich design toolkit for mixing, separating, and analyzing cells and functional beads on-chip.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0712398105</identifier><identifier>PMID: 18495920</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biocompatible Materials - chemical synthesis ; Biocompatible Materials - chemistry ; Biological Sciences ; Biomaterials ; Biomedical materials ; Biophysics ; Biotechnology ; Cells ; Dyes ; Fluid flow ; Humans ; Hydrodynamics ; Lymphocytes ; Microfluidic Analytical Techniques ; Microfluidics - methods ; Optical focus ; Optics ; Particle Size ; Particle trajectories ; Physical Sciences ; Platelets ; Refraction ; Streams ; Trajectories ; Water - chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-05, Vol.105 (21), p.7434-7438</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 27, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-274e76f7b4746c53c2fa2b43b2246a2ceb5b4667e9799b66ec379543d50dbc4c3</citedby><cites>FETCH-LOGICAL-c587t-274e76f7b4746c53c2fa2b43b2246a2ceb5b4667e9799b66ec379543d50dbc4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25462615$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25462615$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18495920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morton, Keith J</creatorcontrib><creatorcontrib>Loutherback, Kevin</creatorcontrib><creatorcontrib>Inglis, David W</creatorcontrib><creatorcontrib>Tsui, Ophelia K</creatorcontrib><creatorcontrib>Sturm, James C</creatorcontrib><creatorcontrib>Chou, Stephen Y</creatorcontrib><creatorcontrib>Austin, Robert H</creatorcontrib><title>Hydrodynamic metamaterials: Microfabricated arrays to steer, refract, and focus streams of biomaterials</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We show that it is possible to direct particles entrained in a fluid along trajectories much like rays of light in classical optics. A microstructured, asymmetric post array forms the core hydrodynamic element and is used as a building block to construct microfluidic metamaterials and to demonstrate refractive, focusing, and dispersive pathways for flowing beads and cells. The core element is based on the concept of deterministic lateral displacement where particles choose different paths through the asymmetric array based on their size: Particles larger than a critical size are displaced laterally at each row by a post and move along the asymmetric axis at an angle to the flow, while smaller particles move along streamline paths. We create compound elements with complex particle handling modes by tiling this core element using multiple transformation operations; we show that particle trajectories can be bent at an interface between two elements and that particles can be focused into hydrodynamic jets by using a single inlet port. Although particles propagate through these elements in a way that strongly resembles light rays propagating through optical elements, there are unique differences in the paths of our particles as compared with photons. The unusual aspects of these modular, microfluidic metamaterials form a rich design toolkit for mixing, separating, and analyzing cells and functional beads on-chip.</description><subject>Biocompatible Materials - chemical synthesis</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biological Sciences</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Biophysics</subject><subject>Biotechnology</subject><subject>Cells</subject><subject>Dyes</subject><subject>Fluid flow</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Lymphocytes</subject><subject>Microfluidic Analytical Techniques</subject><subject>Microfluidics - methods</subject><subject>Optical focus</subject><subject>Optics</subject><subject>Particle Size</subject><subject>Particle trajectories</subject><subject>Physical Sciences</subject><subject>Platelets</subject><subject>Refraction</subject><subject>Streams</subject><subject>Trajectories</subject><subject>Water - chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9ks-PEyEUx4nRuN3q2ZNK9mA87OwCw4_Bg4nZqGuyxoPumQADlWZmqMAY-99L06ZVD55IeJ_3fbzvFwCeYXSFkWivN5POV0hg0soOI_YALDCSuOFUoodggRARTUcJPQPnOa8RQpJ16DE4wx2VTBK0AKvbbZ9iv530GCwcXdGjLi4FPeQ38HOwKXptUrD1soc6Jb3NsESYi3PpEibnk7blEuqphz7aOddKcnrMMHpoQjyKPQGPfD3c08O5BPcf3n-7uW3uvnz8dPPurrGsE6UhgjrBvTBUUG5Za4nXxNDWEEK5JtYZZijnwkkhpeHc2VZIRtueod5YatsleLvX3cxmdL11U0l6UJsURp22Kuqg_q5M4btaxZ-qOsi55FXg1UEgxR-zy0WNIVs3DHpycc5KoDq5-l3Bi3_AdZzTVJdTBOGWYl6pJbjeQ9XInKtdx5dgpHYJql2C6pRg7Xjx5wIn_hBZBV4egF3nSY4pgpWgLa3E6_8Tys_DUNyvUtHne3SdS0xHljDKCcfsNMzrqPQqhazuv-7Wq18JIVpt-A3Ko8P_</recordid><startdate>20080527</startdate><enddate>20080527</enddate><creator>Morton, Keith J</creator><creator>Loutherback, Kevin</creator><creator>Inglis, David W</creator><creator>Tsui, Ophelia K</creator><creator>Sturm, James C</creator><creator>Chou, Stephen Y</creator><creator>Austin, Robert H</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080527</creationdate><title>Hydrodynamic metamaterials: Microfabricated arrays to steer, refract, and focus streams of biomaterials</title><author>Morton, Keith J ; Loutherback, Kevin ; Inglis, David W ; Tsui, Ophelia K ; Sturm, James C ; Chou, Stephen Y ; Austin, Robert H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-274e76f7b4746c53c2fa2b43b2246a2ceb5b4667e9799b66ec379543d50dbc4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biocompatible Materials - chemical synthesis</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biological Sciences</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Biophysics</topic><topic>Biotechnology</topic><topic>Cells</topic><topic>Dyes</topic><topic>Fluid flow</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Lymphocytes</topic><topic>Microfluidic Analytical Techniques</topic><topic>Microfluidics - methods</topic><topic>Optical focus</topic><topic>Optics</topic><topic>Particle Size</topic><topic>Particle trajectories</topic><topic>Physical Sciences</topic><topic>Platelets</topic><topic>Refraction</topic><topic>Streams</topic><topic>Trajectories</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morton, Keith J</creatorcontrib><creatorcontrib>Loutherback, Kevin</creatorcontrib><creatorcontrib>Inglis, David W</creatorcontrib><creatorcontrib>Tsui, Ophelia K</creatorcontrib><creatorcontrib>Sturm, James C</creatorcontrib><creatorcontrib>Chou, Stephen Y</creatorcontrib><creatorcontrib>Austin, Robert H</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morton, Keith J</au><au>Loutherback, Kevin</au><au>Inglis, David W</au><au>Tsui, Ophelia K</au><au>Sturm, James C</au><au>Chou, Stephen Y</au><au>Austin, Robert H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic metamaterials: Microfabricated arrays to steer, refract, and focus streams of biomaterials</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-05-27</date><risdate>2008</risdate><volume>105</volume><issue>21</issue><spage>7434</spage><epage>7438</epage><pages>7434-7438</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We show that it is possible to direct particles entrained in a fluid along trajectories much like rays of light in classical optics. A microstructured, asymmetric post array forms the core hydrodynamic element and is used as a building block to construct microfluidic metamaterials and to demonstrate refractive, focusing, and dispersive pathways for flowing beads and cells. The core element is based on the concept of deterministic lateral displacement where particles choose different paths through the asymmetric array based on their size: Particles larger than a critical size are displaced laterally at each row by a post and move along the asymmetric axis at an angle to the flow, while smaller particles move along streamline paths. We create compound elements with complex particle handling modes by tiling this core element using multiple transformation operations; we show that particle trajectories can be bent at an interface between two elements and that particles can be focused into hydrodynamic jets by using a single inlet port. Although particles propagate through these elements in a way that strongly resembles light rays propagating through optical elements, there are unique differences in the paths of our particles as compared with photons. The unusual aspects of these modular, microfluidic metamaterials form a rich design toolkit for mixing, separating, and analyzing cells and functional beads on-chip.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18495920</pmid><doi>10.1073/pnas.0712398105</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2008-05, Vol.105 (21), p.7434-7438
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2396696
source PubMed (Medline); JSTOR Archival Journals and Primary Sources Collection【Remote access available】
subjects Biocompatible Materials - chemical synthesis
Biocompatible Materials - chemistry
Biological Sciences
Biomaterials
Biomedical materials
Biophysics
Biotechnology
Cells
Dyes
Fluid flow
Humans
Hydrodynamics
Lymphocytes
Microfluidic Analytical Techniques
Microfluidics - methods
Optical focus
Optics
Particle Size
Particle trajectories
Physical Sciences
Platelets
Refraction
Streams
Trajectories
Water - chemistry
title Hydrodynamic metamaterials: Microfabricated arrays to steer, refract, and focus streams of biomaterials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A29%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20metamaterials:%20Microfabricated%20arrays%20to%20steer,%20refract,%20and%20focus%20streams%20of%20biomaterials&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Morton,%20Keith%20J&rft.date=2008-05-27&rft.volume=105&rft.issue=21&rft.spage=7434&rft.epage=7438&rft.pages=7434-7438&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0712398105&rft_dat=%3Cjstor_pubme%3E25462615%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c587t-274e76f7b4746c53c2fa2b43b2246a2ceb5b4667e9799b66ec379543d50dbc4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201341612&rft_id=info:pmid/18495920&rft_jstor_id=25462615&rfr_iscdi=true