Loading…
Hydrodynamic metamaterials: Microfabricated arrays to steer, refract, and focus streams of biomaterials
We show that it is possible to direct particles entrained in a fluid along trajectories much like rays of light in classical optics. A microstructured, asymmetric post array forms the core hydrodynamic element and is used as a building block to construct microfluidic metamaterials and to demonstrate...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2008-05, Vol.105 (21), p.7434-7438 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c587t-274e76f7b4746c53c2fa2b43b2246a2ceb5b4667e9799b66ec379543d50dbc4c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c587t-274e76f7b4746c53c2fa2b43b2246a2ceb5b4667e9799b66ec379543d50dbc4c3 |
container_end_page | 7438 |
container_issue | 21 |
container_start_page | 7434 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 105 |
creator | Morton, Keith J Loutherback, Kevin Inglis, David W Tsui, Ophelia K Sturm, James C Chou, Stephen Y Austin, Robert H |
description | We show that it is possible to direct particles entrained in a fluid along trajectories much like rays of light in classical optics. A microstructured, asymmetric post array forms the core hydrodynamic element and is used as a building block to construct microfluidic metamaterials and to demonstrate refractive, focusing, and dispersive pathways for flowing beads and cells. The core element is based on the concept of deterministic lateral displacement where particles choose different paths through the asymmetric array based on their size: Particles larger than a critical size are displaced laterally at each row by a post and move along the asymmetric axis at an angle to the flow, while smaller particles move along streamline paths. We create compound elements with complex particle handling modes by tiling this core element using multiple transformation operations; we show that particle trajectories can be bent at an interface between two elements and that particles can be focused into hydrodynamic jets by using a single inlet port. Although particles propagate through these elements in a way that strongly resembles light rays propagating through optical elements, there are unique differences in the paths of our particles as compared with photons. The unusual aspects of these modular, microfluidic metamaterials form a rich design toolkit for mixing, separating, and analyzing cells and functional beads on-chip. |
doi_str_mv | 10.1073/pnas.0712398105 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2396696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25462615</jstor_id><sourcerecordid>25462615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-274e76f7b4746c53c2fa2b43b2246a2ceb5b4667e9799b66ec379543d50dbc4c3</originalsourceid><addsrcrecordid>eNp9ks-PEyEUx4nRuN3q2ZNK9mA87OwCw4_Bg4nZqGuyxoPumQADlWZmqMAY-99L06ZVD55IeJ_3fbzvFwCeYXSFkWivN5POV0hg0soOI_YALDCSuOFUoodggRARTUcJPQPnOa8RQpJ16DE4wx2VTBK0AKvbbZ9iv530GCwcXdGjLi4FPeQ38HOwKXptUrD1soc6Jb3NsESYi3PpEibnk7blEuqphz7aOddKcnrMMHpoQjyKPQGPfD3c08O5BPcf3n-7uW3uvnz8dPPurrGsE6UhgjrBvTBUUG5Za4nXxNDWEEK5JtYZZijnwkkhpeHc2VZIRtueod5YatsleLvX3cxmdL11U0l6UJsURp22Kuqg_q5M4btaxZ-qOsi55FXg1UEgxR-zy0WNIVs3DHpycc5KoDq5-l3Bi3_AdZzTVJdTBOGWYl6pJbjeQ9XInKtdx5dgpHYJql2C6pRg7Xjx5wIn_hBZBV4egF3nSY4pgpWgLa3E6_8Tys_DUNyvUtHne3SdS0xHljDKCcfsNMzrqPQqhazuv-7Wq18JIVpt-A3Ko8P_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201341612</pqid></control><display><type>article</type><title>Hydrodynamic metamaterials: Microfabricated arrays to steer, refract, and focus streams of biomaterials</title><source>PubMed (Medline)</source><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><creator>Morton, Keith J ; Loutherback, Kevin ; Inglis, David W ; Tsui, Ophelia K ; Sturm, James C ; Chou, Stephen Y ; Austin, Robert H</creator><creatorcontrib>Morton, Keith J ; Loutherback, Kevin ; Inglis, David W ; Tsui, Ophelia K ; Sturm, James C ; Chou, Stephen Y ; Austin, Robert H</creatorcontrib><description>We show that it is possible to direct particles entrained in a fluid along trajectories much like rays of light in classical optics. A microstructured, asymmetric post array forms the core hydrodynamic element and is used as a building block to construct microfluidic metamaterials and to demonstrate refractive, focusing, and dispersive pathways for flowing beads and cells. The core element is based on the concept of deterministic lateral displacement where particles choose different paths through the asymmetric array based on their size: Particles larger than a critical size are displaced laterally at each row by a post and move along the asymmetric axis at an angle to the flow, while smaller particles move along streamline paths. We create compound elements with complex particle handling modes by tiling this core element using multiple transformation operations; we show that particle trajectories can be bent at an interface between two elements and that particles can be focused into hydrodynamic jets by using a single inlet port. Although particles propagate through these elements in a way that strongly resembles light rays propagating through optical elements, there are unique differences in the paths of our particles as compared with photons. The unusual aspects of these modular, microfluidic metamaterials form a rich design toolkit for mixing, separating, and analyzing cells and functional beads on-chip.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0712398105</identifier><identifier>PMID: 18495920</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biocompatible Materials - chemical synthesis ; Biocompatible Materials - chemistry ; Biological Sciences ; Biomaterials ; Biomedical materials ; Biophysics ; Biotechnology ; Cells ; Dyes ; Fluid flow ; Humans ; Hydrodynamics ; Lymphocytes ; Microfluidic Analytical Techniques ; Microfluidics - methods ; Optical focus ; Optics ; Particle Size ; Particle trajectories ; Physical Sciences ; Platelets ; Refraction ; Streams ; Trajectories ; Water - chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-05, Vol.105 (21), p.7434-7438</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 27, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-274e76f7b4746c53c2fa2b43b2246a2ceb5b4667e9799b66ec379543d50dbc4c3</citedby><cites>FETCH-LOGICAL-c587t-274e76f7b4746c53c2fa2b43b2246a2ceb5b4667e9799b66ec379543d50dbc4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25462615$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25462615$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18495920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morton, Keith J</creatorcontrib><creatorcontrib>Loutherback, Kevin</creatorcontrib><creatorcontrib>Inglis, David W</creatorcontrib><creatorcontrib>Tsui, Ophelia K</creatorcontrib><creatorcontrib>Sturm, James C</creatorcontrib><creatorcontrib>Chou, Stephen Y</creatorcontrib><creatorcontrib>Austin, Robert H</creatorcontrib><title>Hydrodynamic metamaterials: Microfabricated arrays to steer, refract, and focus streams of biomaterials</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We show that it is possible to direct particles entrained in a fluid along trajectories much like rays of light in classical optics. A microstructured, asymmetric post array forms the core hydrodynamic element and is used as a building block to construct microfluidic metamaterials and to demonstrate refractive, focusing, and dispersive pathways for flowing beads and cells. The core element is based on the concept of deterministic lateral displacement where particles choose different paths through the asymmetric array based on their size: Particles larger than a critical size are displaced laterally at each row by a post and move along the asymmetric axis at an angle to the flow, while smaller particles move along streamline paths. We create compound elements with complex particle handling modes by tiling this core element using multiple transformation operations; we show that particle trajectories can be bent at an interface between two elements and that particles can be focused into hydrodynamic jets by using a single inlet port. Although particles propagate through these elements in a way that strongly resembles light rays propagating through optical elements, there are unique differences in the paths of our particles as compared with photons. The unusual aspects of these modular, microfluidic metamaterials form a rich design toolkit for mixing, separating, and analyzing cells and functional beads on-chip.</description><subject>Biocompatible Materials - chemical synthesis</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biological Sciences</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Biophysics</subject><subject>Biotechnology</subject><subject>Cells</subject><subject>Dyes</subject><subject>Fluid flow</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Lymphocytes</subject><subject>Microfluidic Analytical Techniques</subject><subject>Microfluidics - methods</subject><subject>Optical focus</subject><subject>Optics</subject><subject>Particle Size</subject><subject>Particle trajectories</subject><subject>Physical Sciences</subject><subject>Platelets</subject><subject>Refraction</subject><subject>Streams</subject><subject>Trajectories</subject><subject>Water - chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9ks-PEyEUx4nRuN3q2ZNK9mA87OwCw4_Bg4nZqGuyxoPumQADlWZmqMAY-99L06ZVD55IeJ_3fbzvFwCeYXSFkWivN5POV0hg0soOI_YALDCSuOFUoodggRARTUcJPQPnOa8RQpJ16DE4wx2VTBK0AKvbbZ9iv530GCwcXdGjLi4FPeQ38HOwKXptUrD1soc6Jb3NsESYi3PpEibnk7blEuqphz7aOddKcnrMMHpoQjyKPQGPfD3c08O5BPcf3n-7uW3uvnz8dPPurrGsE6UhgjrBvTBUUG5Za4nXxNDWEEK5JtYZZijnwkkhpeHc2VZIRtueod5YatsleLvX3cxmdL11U0l6UJsURp22Kuqg_q5M4btaxZ-qOsi55FXg1UEgxR-zy0WNIVs3DHpycc5KoDq5-l3Bi3_AdZzTVJdTBOGWYl6pJbjeQ9XInKtdx5dgpHYJql2C6pRg7Xjx5wIn_hBZBV4egF3nSY4pgpWgLa3E6_8Tys_DUNyvUtHne3SdS0xHljDKCcfsNMzrqPQqhazuv-7Wq18JIVpt-A3Ko8P_</recordid><startdate>20080527</startdate><enddate>20080527</enddate><creator>Morton, Keith J</creator><creator>Loutherback, Kevin</creator><creator>Inglis, David W</creator><creator>Tsui, Ophelia K</creator><creator>Sturm, James C</creator><creator>Chou, Stephen Y</creator><creator>Austin, Robert H</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080527</creationdate><title>Hydrodynamic metamaterials: Microfabricated arrays to steer, refract, and focus streams of biomaterials</title><author>Morton, Keith J ; Loutherback, Kevin ; Inglis, David W ; Tsui, Ophelia K ; Sturm, James C ; Chou, Stephen Y ; Austin, Robert H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-274e76f7b4746c53c2fa2b43b2246a2ceb5b4667e9799b66ec379543d50dbc4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biocompatible Materials - chemical synthesis</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biological Sciences</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Biophysics</topic><topic>Biotechnology</topic><topic>Cells</topic><topic>Dyes</topic><topic>Fluid flow</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Lymphocytes</topic><topic>Microfluidic Analytical Techniques</topic><topic>Microfluidics - methods</topic><topic>Optical focus</topic><topic>Optics</topic><topic>Particle Size</topic><topic>Particle trajectories</topic><topic>Physical Sciences</topic><topic>Platelets</topic><topic>Refraction</topic><topic>Streams</topic><topic>Trajectories</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morton, Keith J</creatorcontrib><creatorcontrib>Loutherback, Kevin</creatorcontrib><creatorcontrib>Inglis, David W</creatorcontrib><creatorcontrib>Tsui, Ophelia K</creatorcontrib><creatorcontrib>Sturm, James C</creatorcontrib><creatorcontrib>Chou, Stephen Y</creatorcontrib><creatorcontrib>Austin, Robert H</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morton, Keith J</au><au>Loutherback, Kevin</au><au>Inglis, David W</au><au>Tsui, Ophelia K</au><au>Sturm, James C</au><au>Chou, Stephen Y</au><au>Austin, Robert H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic metamaterials: Microfabricated arrays to steer, refract, and focus streams of biomaterials</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-05-27</date><risdate>2008</risdate><volume>105</volume><issue>21</issue><spage>7434</spage><epage>7438</epage><pages>7434-7438</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We show that it is possible to direct particles entrained in a fluid along trajectories much like rays of light in classical optics. A microstructured, asymmetric post array forms the core hydrodynamic element and is used as a building block to construct microfluidic metamaterials and to demonstrate refractive, focusing, and dispersive pathways for flowing beads and cells. The core element is based on the concept of deterministic lateral displacement where particles choose different paths through the asymmetric array based on their size: Particles larger than a critical size are displaced laterally at each row by a post and move along the asymmetric axis at an angle to the flow, while smaller particles move along streamline paths. We create compound elements with complex particle handling modes by tiling this core element using multiple transformation operations; we show that particle trajectories can be bent at an interface between two elements and that particles can be focused into hydrodynamic jets by using a single inlet port. Although particles propagate through these elements in a way that strongly resembles light rays propagating through optical elements, there are unique differences in the paths of our particles as compared with photons. The unusual aspects of these modular, microfluidic metamaterials form a rich design toolkit for mixing, separating, and analyzing cells and functional beads on-chip.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18495920</pmid><doi>10.1073/pnas.0712398105</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2008-05, Vol.105 (21), p.7434-7438 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2396696 |
source | PubMed (Medline); JSTOR Archival Journals and Primary Sources Collection【Remote access available】 |
subjects | Biocompatible Materials - chemical synthesis Biocompatible Materials - chemistry Biological Sciences Biomaterials Biomedical materials Biophysics Biotechnology Cells Dyes Fluid flow Humans Hydrodynamics Lymphocytes Microfluidic Analytical Techniques Microfluidics - methods Optical focus Optics Particle Size Particle trajectories Physical Sciences Platelets Refraction Streams Trajectories Water - chemistry |
title | Hydrodynamic metamaterials: Microfabricated arrays to steer, refract, and focus streams of biomaterials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A29%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20metamaterials:%20Microfabricated%20arrays%20to%20steer,%20refract,%20and%20focus%20streams%20of%20biomaterials&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Morton,%20Keith%20J&rft.date=2008-05-27&rft.volume=105&rft.issue=21&rft.spage=7434&rft.epage=7438&rft.pages=7434-7438&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0712398105&rft_dat=%3Cjstor_pubme%3E25462615%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c587t-274e76f7b4746c53c2fa2b43b2246a2ceb5b4667e9799b66ec379543d50dbc4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201341612&rft_id=info:pmid/18495920&rft_jstor_id=25462615&rfr_iscdi=true |