Loading…

Loss of NOS1 expression in high-grade renal cell carcinoma associated with a shift of NO signalling

In normal human kidney, NOS1 and soluble guanylate cyclase (sGC) are expressed in tubular epithelial cells, suggesting a physiological autocrine NO signalling pathway. Therefore, we investigated both NOS1 and sGC expressions in benign and malignant renal tumours. In addition, we examined the pattern...

Full description

Saved in:
Bibliographic Details
Published in:British journal of cancer 2004-06, Vol.90 (12), p.2364-2369
Main Authors: Renaudin, K, Denis, M G, Karam, G, Vallette, G, Buzelin, F, Laboisse, C L, Jarry, A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In normal human kidney, NOS1 and soluble guanylate cyclase (sGC) are expressed in tubular epithelial cells, suggesting a physiological autocrine NO signalling pathway. Therefore, we investigated both NOS1 and sGC expressions in benign and malignant renal tumours. In addition, we examined the pattern of protein tyrosine nitration in normal and tumour tissue. NOS1 expression and activity were found to be downregulated, correlating with the tumour grade, as shown by immunohistochemistry, quantitative RT–PCR analysis, and histochemical detection of the NADPH-diaphorase activity of nitric oxide synthases (NOS). These results show that the autocrine NO signalling pathway is maintained in benign tumours and lost in malignant tumours. In contrast, sGC expression was maintained in renal tumours whatever the tumour type, a finding showing that tumour cells remain sensitive to the bioregulatory role of exogeneous NO • . Finally, the staining pattern of protein tyrosine nitration, assessed by immunohistochemistry, parallelled that of NOS1 expression in normal renal parenchyma and benign tumours, supporting the concept that protein nitration was accounted for by NOS1 activity. In contrast, in malignant tumours, protein tyrosine nitration was accounted for by the production of reactive nitrogen oxide species by the inflammatory infiltrate. Altogether, these findings argue for a pattern of NO signalling similar in normal kidney and benign renal tumours, whereas it is completely different in malignant renal tumours.
ISSN:0007-0920
1532-1827
DOI:10.1038/sj.bjc.6601809