Loading…
Contribution of Ser386 and Ser396 to Activation of Interferon Regulatory Factor 3
IRF-3, a member of the interferon regulatory factor (IRF) family of transcription factors, functions in innate immune defense against viral infection. Upon infection, host cell IRF-3 is activated by phosphorylation at its seven C-terminal Ser/Thr residues: 385 SSLENTVDLHI SN SHPL SL TS 405. This pho...
Saved in:
Published in: | Journal of molecular biology 2008-05, Vol.379 (2), p.251-260 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | IRF-3, a member of the interferon regulatory factor (IRF) family of transcription factors, functions in innate immune defense against viral infection. Upon infection, host cell IRF-3 is activated by phosphorylation at its seven C-terminal Ser/Thr residues:
385
SSLENTVDLHI
SN
SHPL
SL
TS
405. This phosphoactivation triggers IRF-3 to react with the coactivators, CREB-binding protein (CBP)/p300, to form a complex that activates target genes in the nucleus. However, the role of each phosphorylation site for IRF-3 phosphoactivation remains unresolved. To address this issue, all seven Ser/Thr potential phosphorylation sites were screened by mutational studies, size-exclusion chromatography, and isothermal titration calorimetry. Using purified proteins, we show that CBP (amino acid residues 2067–2112) interacts directly with IRF-3 (173–427) and six of its single-site mutants to form heterodimers, but when CBP interacts with IRF-3 S396D, oligomerization is evident. CBP also interacts
in vitro with IRF-3 double-site mutants to form different levels of oligomerization. Among all the single-site mutants, IRF-3 S396D showed the strongest binding to CBP. Although IRF-3 S386D alone did not interact as strongly with CBP as did other mutants, it strengthened the interaction and oligomerization of IRF-3 S396D with CBP. In contrast, IRF-3 S385D weakened the interaction and oligomerization of IRF-3 S396D and S386/396D with CBP. Thus, it appears that Ser385 and Ser386 serve antagonistic functions in regulating IRF-3 phosphoactivation. These results indicate that Ser386 and Ser396 are critical for IRF-3 activation, and support a phosphorylation-oligomerization model for IRF-3 activation. |
---|---|
ISSN: | 0022-2836 1089-8638 |
DOI: | 10.1016/j.jmb.2008.03.050 |