Loading…
Cellular responses to ionising radiation of AT heterozygotes: differences between missense and truncating mutation carriers
It has been estimated that approximately 1% of the general population are ataxia telangiectasia (AT) mutated ( ATM ) heterozygotes. The ATM protein plays a central role in DNA-damage response pathways; however, the functional consequences of the presence of either heterozygous truncating or missense...
Saved in:
Published in: | British journal of cancer 2004-02, Vol.90 (4), p.866-873 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It has been estimated that approximately 1% of the general population are ataxia telangiectasia (AT) mutated (
ATM
) heterozygotes. The ATM protein plays a central role in DNA-damage response pathways; however, the functional consequences of the presence of either heterozygous truncating or missense mutations on
ATM
expression and the ionising radiation (IR)-induced cellular phenotype remain to be fully determined. To investigate this relationship, the
ATM
mRNA and protein levels and several cellular end points were characterised in 14 AT heterozygote (AT het) lymphoblastoid cell lines, compared to normal and AT homozygote lines. The AT het cell lines displayed a wide range of IR-induced responses: despite lower average levels of
ATM
mRNA and protein expression compared to normal cells, 13 out of 14 were capable of phosphorylating the ATM substrates p53-ser15 and Chk2, leading to a normal cell cycle progression after irradiation. However, cell survival was lower than in the normal cell lines. The presence of a missense compared to a truncating mutation was associated with lower cell survival after exposure to 2 Gy irradiation (
P
=0.005), and a higher level of
ATM
mRNA expression (
P
=0.047). Our results underline the difficulty in establishing a reliable test for determining
ATM
heterozygosity. |
---|---|
ISSN: | 0007-0920 1532-1827 |
DOI: | 10.1038/sj.bjc.6601549 |