Loading…

N-hexanoyl-sphingomyelin potentiates in vitro doxorubicin cytotoxicity by enhancing its cellular influx

Anticancer drugs generally have intracellular targets, implicating transport over the plasma membrane. For amphiphilic agents, such as the anthracycline doxorubicin, this occurs by passive diffusion. We investigated whether exogenous membrane-permeable lipid analogues improve this drug influx. Combi...

Full description

Saved in:
Bibliographic Details
Published in:British journal of cancer 2004-02, Vol.90 (4), p.917-925
Main Authors: Veldman, R J, Zerp, S, van Blitterswijk, W J, Verheij, M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Anticancer drugs generally have intracellular targets, implicating transport over the plasma membrane. For amphiphilic agents, such as the anthracycline doxorubicin, this occurs by passive diffusion. We investigated whether exogenous membrane-permeable lipid analogues improve this drug influx. Combinations of drugs and lipid analogues were coadministered to cultured endothelial cells and various tumour cell lines, and subsequent drug accumulation in cells was quantified. We identified N -hexanoyl-sphingomyelin (SM) as a potent enhancer of drug uptake. Low micromolar amounts of this short-chain sphingolipid, being not toxic itself, enhanced the uptake of doxorubicin up to 300% and decreased its EC 50 toxicity values seven- to 14-fold. N -hexanoyl SM acts at the level of the plasma membrane, but was found not incorporated in (isolated) lipid rafts, and artificial disruption or elimination of raft constituents did not affect its drug uptake-enhancing effect. Further, any mechanistic role of the endocytic machinery, membrane leakage or ABC-transporter-mediated efflux could be excluded. Finally, a correlation was established between the degree of drug lipophilicity, as defined by partitioning in a two-phase octanol–water system, and the susceptibility of the drug towards the uptake-enhancing effect of the sphingolipid. A clear optimum was found for amphiphilic drugs, such as doxorubicin, epirubicin and topotecan, indicating that N -hexanoyl-SM might act by modulating the average degree of plasma membrane lipophilicity, in turn facilitating transbilayer drug diffusion. The concept of short-chain sphingolipids as amphiphilic drug potentiators provides novel opportunities for improving drug delivery technologies.
ISSN:0007-0920
1532-1827
DOI:10.1038/sj.bjc.6601581