Loading…
Mapping of Small RNAs in the Human ENCODE Regions
The elucidation of the largely unknown transcriptome of small RNAs is crucial for the understanding of genome and cellular function. We report here the results of the analysis of small RNAs (< 50 nt) in the ENCODE regions of the human genome. Size-fractionated RNAs from four different cell lines...
Saved in:
Published in: | American journal of human genetics 2008-04, Vol.82 (4), p.971-981 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c541t-71b41d6759d4caff91d28c95d02e42b870b01e1677b8b1ce9e14b946e8f229b33 |
---|---|
cites | cdi_FETCH-LOGICAL-c541t-71b41d6759d4caff91d28c95d02e42b870b01e1677b8b1ce9e14b946e8f229b33 |
container_end_page | 981 |
container_issue | 4 |
container_start_page | 971 |
container_title | American journal of human genetics |
container_volume | 82 |
creator | Borel, Christelle Gagnebin, Maryline Gehrig, Corinne Kriventseva, Evgenia V. Zdobnov, Evgeny M. Antonarakis, Stylianos E. |
description | The elucidation of the largely unknown transcriptome of small RNAs is crucial for the understanding of genome and cellular function. We report here the results of the analysis of small RNAs (< 50 nt) in the ENCODE regions of the human genome. Size-fractionated RNAs from four different cell lines (HepG2, HelaS3, GM06990, SK-N-SH) were mapped with the forward and reverse ENCODE high-density resolution tiling arrays. The top 1% of hybridization signals are termed SmRfrags (Small RNA fragments). Eight percent of SmRfrags overlap the GENCODE genes (CDS), given that the majority map to intergenic regions (34%), intronic regions (53%), and untranslated regions (UTRs) (5%). In addition, 9.6% and 16.8% of SmRfrags in the 5′ UTR regions overlap significantly with His/Pol II/TAF250 binding sites and DNase I Hypersensitive sites, respectively (compared to the 5.3% and 9% expected). Interestingly, 17%–24% (depending on the cell line) of SmRfrags are sense-antisense strand pairs that show evidence of overlapping transcription. Only 3.4% and 7.2% of SmRfrags in intergenic regions overlap transcribed fragments (Txfrags) in HeLa and GM06990 cell lines, respectively. We hypothesized that a fraction of the identified SmRfrags corresponded to microRNAs. We tested by Northern blot a set of 15 high-likelihood predictions of microRNA candidates that overlap with smRfrags and validated three potential microRNAs (∼20 nt length). Notably, most of the remaining candidates showed a larger hybridizing band (∼100 nt) that could be a microRNA precursor. The small RNA transcriptome is emerging as an important and abundant component of the genome function. |
doi_str_mv | 10.1016/j.ajhg.2008.02.016 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2427294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002929708002085</els_id><sourcerecordid>1466213181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-71b41d6759d4caff91d28c95d02e42b870b01e1677b8b1ce9e14b946e8f229b33</originalsourceid><addsrcrecordid>eNqFkV2L1DAUhoMo7rj6B7yQIuhd6zlp0jQgwjKOrrDuwqrXIU3TmZQ2HZN2wX9vhhnWjwu9Cpw85-VNHkKeIxQIWL3pC93vtgUFqAugRRo9ICvkpcirCvhDsgIAmksqxRl5EmMPgFhD-ZicYV1KxmtYEfys93vnt9nUZV9GPQzZ7fVFzJzP5p3NLpdR-2xzvb55v8lu7dZNPj4ljzo9RPvsdJ6Tbx82X9eX-dXNx0_ri6vccIZzLrBh2FaCy5YZ3XUSW1obyVugltGmFtAAWqyEaOoGjZUWWSNZZeuOUtmU5Tl5d8zdL81oW2P9HPSg9sGNOvxQk3bqzxvvdmo73SnKqKCSpYDXp4AwfV9snNXoorHDoL2dlqgEMFFxlP8FKdCylIgJfPkX2E9L8OkXFEVZIZRQJYgeIROmGIPt7isjqIM31auDN3XwpoCqNEpLL35_7K-Vk6gEvDoBOho9dEF74-I9lyoKwWueuLdHziY1d84GFY2z3tjWBWtm1U7uXz1-AjiPsxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219610306</pqid></control><display><type>article</type><title>Mapping of Small RNAs in the Human ENCODE Regions</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><source>Open Access: PubMed Central</source><creator>Borel, Christelle ; Gagnebin, Maryline ; Gehrig, Corinne ; Kriventseva, Evgenia V. ; Zdobnov, Evgeny M. ; Antonarakis, Stylianos E.</creator><creatorcontrib>Borel, Christelle ; Gagnebin, Maryline ; Gehrig, Corinne ; Kriventseva, Evgenia V. ; Zdobnov, Evgeny M. ; Antonarakis, Stylianos E.</creatorcontrib><description>The elucidation of the largely unknown transcriptome of small RNAs is crucial for the understanding of genome and cellular function. We report here the results of the analysis of small RNAs (< 50 nt) in the ENCODE regions of the human genome. Size-fractionated RNAs from four different cell lines (HepG2, HelaS3, GM06990, SK-N-SH) were mapped with the forward and reverse ENCODE high-density resolution tiling arrays. The top 1% of hybridization signals are termed SmRfrags (Small RNA fragments). Eight percent of SmRfrags overlap the GENCODE genes (CDS), given that the majority map to intergenic regions (34%), intronic regions (53%), and untranslated regions (UTRs) (5%). In addition, 9.6% and 16.8% of SmRfrags in the 5′ UTR regions overlap significantly with His/Pol II/TAF250 binding sites and DNase I Hypersensitive sites, respectively (compared to the 5.3% and 9% expected). Interestingly, 17%–24% (depending on the cell line) of SmRfrags are sense-antisense strand pairs that show evidence of overlapping transcription. Only 3.4% and 7.2% of SmRfrags in intergenic regions overlap transcribed fragments (Txfrags) in HeLa and GM06990 cell lines, respectively. We hypothesized that a fraction of the identified SmRfrags corresponded to microRNAs. We tested by Northern blot a set of 15 high-likelihood predictions of microRNA candidates that overlap with smRfrags and validated three potential microRNAs (∼20 nt length). Notably, most of the remaining candidates showed a larger hybridizing band (∼100 nt) that could be a microRNA precursor. The small RNA transcriptome is emerging as an important and abundant component of the genome function.</description><identifier>ISSN: 0002-9297</identifier><identifier>EISSN: 1537-6605</identifier><identifier>DOI: 10.1016/j.ajhg.2008.02.016</identifier><identifier>PMID: 18394580</identifier><identifier>CODEN: AJHGAG</identifier><language>eng</language><publisher>Chicago, IL: Elsevier Inc</publisher><subject>5' Untranslated Regions - genetics ; Base Sequence ; Binding sites ; Biological and medical sciences ; Cell Line, Tumor ; Cells ; Chromosome Mapping ; Classical genetics, quantitative genetics, hybrids ; Fundamental and applied biological sciences. Psychology ; General aspects. Genetic counseling ; Genes ; Genetics of eukaryotes. Biological and molecular evolution ; Genome, Human - genetics ; Genomics ; Human ; Humans ; Medical genetics ; Medical sciences ; MicroRNAs - genetics ; Molecular and cellular biology ; Molecular Sequence Data ; Oligonucleotide Array Sequence Analysis ; Ribonucleic acid ; RNA ; Signal transduction ; Transcription, Genetic</subject><ispartof>American journal of human genetics, 2008-04, Vol.82 (4), p.971-981</ispartof><rights>2008 The American Society of Human Genetics</rights><rights>2008 INIST-CNRS</rights><rights>Copyright University of Chicago, acting through its Press Apr 11, 2008</rights><rights>2008 The American Society of Human Genetics. Published by Elsevier Ltd. All right reserved.. 2008 The American Society of Human Genetics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-71b41d6759d4caff91d28c95d02e42b870b01e1677b8b1ce9e14b946e8f229b33</citedby><cites>FETCH-LOGICAL-c541t-71b41d6759d4caff91d28c95d02e42b870b01e1677b8b1ce9e14b946e8f229b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2427294/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2427294/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20277585$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18394580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borel, Christelle</creatorcontrib><creatorcontrib>Gagnebin, Maryline</creatorcontrib><creatorcontrib>Gehrig, Corinne</creatorcontrib><creatorcontrib>Kriventseva, Evgenia V.</creatorcontrib><creatorcontrib>Zdobnov, Evgeny M.</creatorcontrib><creatorcontrib>Antonarakis, Stylianos E.</creatorcontrib><title>Mapping of Small RNAs in the Human ENCODE Regions</title><title>American journal of human genetics</title><addtitle>Am J Hum Genet</addtitle><description>The elucidation of the largely unknown transcriptome of small RNAs is crucial for the understanding of genome and cellular function. We report here the results of the analysis of small RNAs (< 50 nt) in the ENCODE regions of the human genome. Size-fractionated RNAs from four different cell lines (HepG2, HelaS3, GM06990, SK-N-SH) were mapped with the forward and reverse ENCODE high-density resolution tiling arrays. The top 1% of hybridization signals are termed SmRfrags (Small RNA fragments). Eight percent of SmRfrags overlap the GENCODE genes (CDS), given that the majority map to intergenic regions (34%), intronic regions (53%), and untranslated regions (UTRs) (5%). In addition, 9.6% and 16.8% of SmRfrags in the 5′ UTR regions overlap significantly with His/Pol II/TAF250 binding sites and DNase I Hypersensitive sites, respectively (compared to the 5.3% and 9% expected). Interestingly, 17%–24% (depending on the cell line) of SmRfrags are sense-antisense strand pairs that show evidence of overlapping transcription. Only 3.4% and 7.2% of SmRfrags in intergenic regions overlap transcribed fragments (Txfrags) in HeLa and GM06990 cell lines, respectively. We hypothesized that a fraction of the identified SmRfrags corresponded to microRNAs. We tested by Northern blot a set of 15 high-likelihood predictions of microRNA candidates that overlap with smRfrags and validated three potential microRNAs (∼20 nt length). Notably, most of the remaining candidates showed a larger hybridizing band (∼100 nt) that could be a microRNA precursor. The small RNA transcriptome is emerging as an important and abundant component of the genome function.</description><subject>5' Untranslated Regions - genetics</subject><subject>Base Sequence</subject><subject>Binding sites</subject><subject>Biological and medical sciences</subject><subject>Cell Line, Tumor</subject><subject>Cells</subject><subject>Chromosome Mapping</subject><subject>Classical genetics, quantitative genetics, hybrids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Genetic counseling</subject><subject>Genes</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Genome, Human - genetics</subject><subject>Genomics</subject><subject>Human</subject><subject>Humans</subject><subject>Medical genetics</subject><subject>Medical sciences</subject><subject>MicroRNAs - genetics</subject><subject>Molecular and cellular biology</subject><subject>Molecular Sequence Data</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Signal transduction</subject><subject>Transcription, Genetic</subject><issn>0002-9297</issn><issn>1537-6605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkV2L1DAUhoMo7rj6B7yQIuhd6zlp0jQgwjKOrrDuwqrXIU3TmZQ2HZN2wX9vhhnWjwu9Cpw85-VNHkKeIxQIWL3pC93vtgUFqAugRRo9ICvkpcirCvhDsgIAmksqxRl5EmMPgFhD-ZicYV1KxmtYEfys93vnt9nUZV9GPQzZ7fVFzJzP5p3NLpdR-2xzvb55v8lu7dZNPj4ljzo9RPvsdJ6Tbx82X9eX-dXNx0_ri6vccIZzLrBh2FaCy5YZ3XUSW1obyVugltGmFtAAWqyEaOoGjZUWWSNZZeuOUtmU5Tl5d8zdL81oW2P9HPSg9sGNOvxQk3bqzxvvdmo73SnKqKCSpYDXp4AwfV9snNXoorHDoL2dlqgEMFFxlP8FKdCylIgJfPkX2E9L8OkXFEVZIZRQJYgeIROmGIPt7isjqIM31auDN3XwpoCqNEpLL35_7K-Vk6gEvDoBOho9dEF74-I9lyoKwWueuLdHziY1d84GFY2z3tjWBWtm1U7uXz1-AjiPsxw</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Borel, Christelle</creator><creator>Gagnebin, Maryline</creator><creator>Gehrig, Corinne</creator><creator>Kriventseva, Evgenia V.</creator><creator>Zdobnov, Evgeny M.</creator><creator>Antonarakis, Stylianos E.</creator><general>Elsevier Inc</general><general>University of Chicago Press</general><general>Cell Press</general><general>American Society of Human Genetics</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080401</creationdate><title>Mapping of Small RNAs in the Human ENCODE Regions</title><author>Borel, Christelle ; Gagnebin, Maryline ; Gehrig, Corinne ; Kriventseva, Evgenia V. ; Zdobnov, Evgeny M. ; Antonarakis, Stylianos E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-71b41d6759d4caff91d28c95d02e42b870b01e1677b8b1ce9e14b946e8f229b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>5' Untranslated Regions - genetics</topic><topic>Base Sequence</topic><topic>Binding sites</topic><topic>Biological and medical sciences</topic><topic>Cell Line, Tumor</topic><topic>Cells</topic><topic>Chromosome Mapping</topic><topic>Classical genetics, quantitative genetics, hybrids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Genetic counseling</topic><topic>Genes</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Genome, Human - genetics</topic><topic>Genomics</topic><topic>Human</topic><topic>Humans</topic><topic>Medical genetics</topic><topic>Medical sciences</topic><topic>MicroRNAs - genetics</topic><topic>Molecular and cellular biology</topic><topic>Molecular Sequence Data</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Signal transduction</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borel, Christelle</creatorcontrib><creatorcontrib>Gagnebin, Maryline</creatorcontrib><creatorcontrib>Gehrig, Corinne</creatorcontrib><creatorcontrib>Kriventseva, Evgenia V.</creatorcontrib><creatorcontrib>Zdobnov, Evgeny M.</creatorcontrib><creatorcontrib>Antonarakis, Stylianos E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borel, Christelle</au><au>Gagnebin, Maryline</au><au>Gehrig, Corinne</au><au>Kriventseva, Evgenia V.</au><au>Zdobnov, Evgeny M.</au><au>Antonarakis, Stylianos E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping of Small RNAs in the Human ENCODE Regions</atitle><jtitle>American journal of human genetics</jtitle><addtitle>Am J Hum Genet</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>82</volume><issue>4</issue><spage>971</spage><epage>981</epage><pages>971-981</pages><issn>0002-9297</issn><eissn>1537-6605</eissn><coden>AJHGAG</coden><abstract>The elucidation of the largely unknown transcriptome of small RNAs is crucial for the understanding of genome and cellular function. We report here the results of the analysis of small RNAs (< 50 nt) in the ENCODE regions of the human genome. Size-fractionated RNAs from four different cell lines (HepG2, HelaS3, GM06990, SK-N-SH) were mapped with the forward and reverse ENCODE high-density resolution tiling arrays. The top 1% of hybridization signals are termed SmRfrags (Small RNA fragments). Eight percent of SmRfrags overlap the GENCODE genes (CDS), given that the majority map to intergenic regions (34%), intronic regions (53%), and untranslated regions (UTRs) (5%). In addition, 9.6% and 16.8% of SmRfrags in the 5′ UTR regions overlap significantly with His/Pol II/TAF250 binding sites and DNase I Hypersensitive sites, respectively (compared to the 5.3% and 9% expected). Interestingly, 17%–24% (depending on the cell line) of SmRfrags are sense-antisense strand pairs that show evidence of overlapping transcription. Only 3.4% and 7.2% of SmRfrags in intergenic regions overlap transcribed fragments (Txfrags) in HeLa and GM06990 cell lines, respectively. We hypothesized that a fraction of the identified SmRfrags corresponded to microRNAs. We tested by Northern blot a set of 15 high-likelihood predictions of microRNA candidates that overlap with smRfrags and validated three potential microRNAs (∼20 nt length). Notably, most of the remaining candidates showed a larger hybridizing band (∼100 nt) that could be a microRNA precursor. The small RNA transcriptome is emerging as an important and abundant component of the genome function.</abstract><cop>Chicago, IL</cop><pub>Elsevier Inc</pub><pmid>18394580</pmid><doi>10.1016/j.ajhg.2008.02.016</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9297 |
ispartof | American journal of human genetics, 2008-04, Vol.82 (4), p.971-981 |
issn | 0002-9297 1537-6605 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2427294 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS; Open Access: PubMed Central |
subjects | 5' Untranslated Regions - genetics Base Sequence Binding sites Biological and medical sciences Cell Line, Tumor Cells Chromosome Mapping Classical genetics, quantitative genetics, hybrids Fundamental and applied biological sciences. Psychology General aspects. Genetic counseling Genes Genetics of eukaryotes. Biological and molecular evolution Genome, Human - genetics Genomics Human Humans Medical genetics Medical sciences MicroRNAs - genetics Molecular and cellular biology Molecular Sequence Data Oligonucleotide Array Sequence Analysis Ribonucleic acid RNA Signal transduction Transcription, Genetic |
title | Mapping of Small RNAs in the Human ENCODE Regions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A08%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20of%20Small%20RNAs%20in%20the%20Human%20ENCODE%20Regions&rft.jtitle=American%20journal%20of%20human%20genetics&rft.au=Borel,%20Christelle&rft.date=2008-04-01&rft.volume=82&rft.issue=4&rft.spage=971&rft.epage=981&rft.pages=971-981&rft.issn=0002-9297&rft.eissn=1537-6605&rft.coden=AJHGAG&rft_id=info:doi/10.1016/j.ajhg.2008.02.016&rft_dat=%3Cproquest_pubme%3E1466213181%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-71b41d6759d4caff91d28c95d02e42b870b01e1677b8b1ce9e14b946e8f229b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=219610306&rft_id=info:pmid/18394580&rfr_iscdi=true |