Loading…

Multi-modal image set registration and atlas formation

In this paper, we present a Bayesian framework for both generating inter-subject large deformation transformations between two multi-modal image sets of the brain and for forming multi-class brain atlases. In this framework, the estimated transformations are generated using maximal information about...

Full description

Saved in:
Bibliographic Details
Published in:Medical image analysis 2006-06, Vol.10 (3), p.440-451
Main Authors: Lorenzen, Peter, Prastawa, Marcel, Davis, Brad, Gerig, Guido, Bullitt, Elizabeth, Joshi, Sarang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c488t-7600f00d0b78305307d1ea9c4e8f24cb25ed58c1d5dc03750141a59b74c424d93
cites cdi_FETCH-LOGICAL-c488t-7600f00d0b78305307d1ea9c4e8f24cb25ed58c1d5dc03750141a59b74c424d93
container_end_page 451
container_issue 3
container_start_page 440
container_title Medical image analysis
container_volume 10
creator Lorenzen, Peter
Prastawa, Marcel
Davis, Brad
Gerig, Guido
Bullitt, Elizabeth
Joshi, Sarang
description In this paper, we present a Bayesian framework for both generating inter-subject large deformation transformations between two multi-modal image sets of the brain and for forming multi-class brain atlases. In this framework, the estimated transformations are generated using maximal information about the underlying neuroanatomy present in each of the different modalities. This modality independent registration framework is achieved by jointly estimating the posterior probabilities associated with the multi-modal image sets and the high-dimensional registration transformations mapping these posteriors. To maximally use the information present in all the modalities for registration, Kullback–Leibler divergence between the estimated posteriors is minimized. Registration results for image sets composed of multi-modal MR images of healthy adult human brains are presented. Atlas formation results are presented for a population of five infant human brains.
doi_str_mv 10.1016/j.media.2005.03.002
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2430608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841505000447</els_id><sourcerecordid>19444740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-7600f00d0b78305307d1ea9c4e8f24cb25ed58c1d5dc03750141a59b74c424d93</originalsourceid><addsrcrecordid>eNqFkUlPwzAQhS0EoqXwC5BQTtwSxrGd5QASQmwSiAucLdeeFFdJXOwUiX-Pu4jlAidb9jdv3swj5JhCRoEWZ_OsQ2NVlgOIDFgGkO-QMWUFTSues92vOxUjchDCHABKzmGfjKioaZ0zOibF47IdbNo5o9rEdmqGScAh8TizYfBqsK5PVG8SNbQqJI3z3frtkOw1qg14tD0n5OXm-vnqLn14ur2_unxINa-qIS0LgAbAwLSsGAgGpaGoas2xanKup7lAIypNjTAaWCmAcqpEPS255jk3NZuQi43uYjmN02rso6lWLny06j-kU1b-_untq5y5d5lzBgVUUeB0K-Dd2xLDIDsbNLat6tEtgyzKmvK4ln9BWnPOSw4RZBtQexeCx-bLDQW5CkbO5ToYuQpGApMxmFh18nOQ75ptEhE43wAY1_lu0cugLfY6KnnUgzTO_tngE49Rn5M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19444740</pqid></control><display><type>article</type><title>Multi-modal image set registration and atlas formation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Lorenzen, Peter ; Prastawa, Marcel ; Davis, Brad ; Gerig, Guido ; Bullitt, Elizabeth ; Joshi, Sarang</creator><creatorcontrib>Lorenzen, Peter ; Prastawa, Marcel ; Davis, Brad ; Gerig, Guido ; Bullitt, Elizabeth ; Joshi, Sarang</creatorcontrib><description>In this paper, we present a Bayesian framework for both generating inter-subject large deformation transformations between two multi-modal image sets of the brain and for forming multi-class brain atlases. In this framework, the estimated transformations are generated using maximal information about the underlying neuroanatomy present in each of the different modalities. This modality independent registration framework is achieved by jointly estimating the posterior probabilities associated with the multi-modal image sets and the high-dimensional registration transformations mapping these posteriors. To maximally use the information present in all the modalities for registration, Kullback–Leibler divergence between the estimated posteriors is minimized. Registration results for image sets composed of multi-modal MR images of healthy adult human brains are presented. Atlas formation results are presented for a population of five infant human brains.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2005.03.002</identifier><identifier>PMID: 15919231</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Artificial Intelligence ; Atlas formation ; Brain - anatomy &amp; histology ; Computational anatomy ; Databases, Factual ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Information Storage and Retrieval - methods ; Information theory ; Inverse consistent registration ; Magnetic Resonance Imaging - methods ; Medical image analysis ; Multi-modal image set registration ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Subtraction Technique</subject><ispartof>Medical image analysis, 2006-06, Vol.10 (3), p.440-451</ispartof><rights>2005 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-7600f00d0b78305307d1ea9c4e8f24cb25ed58c1d5dc03750141a59b74c424d93</citedby><cites>FETCH-LOGICAL-c488t-7600f00d0b78305307d1ea9c4e8f24cb25ed58c1d5dc03750141a59b74c424d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15919231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lorenzen, Peter</creatorcontrib><creatorcontrib>Prastawa, Marcel</creatorcontrib><creatorcontrib>Davis, Brad</creatorcontrib><creatorcontrib>Gerig, Guido</creatorcontrib><creatorcontrib>Bullitt, Elizabeth</creatorcontrib><creatorcontrib>Joshi, Sarang</creatorcontrib><title>Multi-modal image set registration and atlas formation</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>In this paper, we present a Bayesian framework for both generating inter-subject large deformation transformations between two multi-modal image sets of the brain and for forming multi-class brain atlases. In this framework, the estimated transformations are generated using maximal information about the underlying neuroanatomy present in each of the different modalities. This modality independent registration framework is achieved by jointly estimating the posterior probabilities associated with the multi-modal image sets and the high-dimensional registration transformations mapping these posteriors. To maximally use the information present in all the modalities for registration, Kullback–Leibler divergence between the estimated posteriors is minimized. Registration results for image sets composed of multi-modal MR images of healthy adult human brains are presented. Atlas formation results are presented for a population of five infant human brains.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Atlas formation</subject><subject>Brain - anatomy &amp; histology</subject><subject>Computational anatomy</subject><subject>Databases, Factual</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information theory</subject><subject>Inverse consistent registration</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical image analysis</subject><subject>Multi-modal image set registration</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Subtraction Technique</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkUlPwzAQhS0EoqXwC5BQTtwSxrGd5QASQmwSiAucLdeeFFdJXOwUiX-Pu4jlAidb9jdv3swj5JhCRoEWZ_OsQ2NVlgOIDFgGkO-QMWUFTSues92vOxUjchDCHABKzmGfjKioaZ0zOibF47IdbNo5o9rEdmqGScAh8TizYfBqsK5PVG8SNbQqJI3z3frtkOw1qg14tD0n5OXm-vnqLn14ur2_unxINa-qIS0LgAbAwLSsGAgGpaGoas2xanKup7lAIypNjTAaWCmAcqpEPS255jk3NZuQi43uYjmN02rso6lWLny06j-kU1b-_untq5y5d5lzBgVUUeB0K-Dd2xLDIDsbNLat6tEtgyzKmvK4ln9BWnPOSw4RZBtQexeCx-bLDQW5CkbO5ToYuQpGApMxmFh18nOQ75ptEhE43wAY1_lu0cugLfY6KnnUgzTO_tngE49Rn5M</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Lorenzen, Peter</creator><creator>Prastawa, Marcel</creator><creator>Davis, Brad</creator><creator>Gerig, Guido</creator><creator>Bullitt, Elizabeth</creator><creator>Joshi, Sarang</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060601</creationdate><title>Multi-modal image set registration and atlas formation</title><author>Lorenzen, Peter ; Prastawa, Marcel ; Davis, Brad ; Gerig, Guido ; Bullitt, Elizabeth ; Joshi, Sarang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-7600f00d0b78305307d1ea9c4e8f24cb25ed58c1d5dc03750141a59b74c424d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Atlas formation</topic><topic>Brain - anatomy &amp; histology</topic><topic>Computational anatomy</topic><topic>Databases, Factual</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information theory</topic><topic>Inverse consistent registration</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical image analysis</topic><topic>Multi-modal image set registration</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Subtraction Technique</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lorenzen, Peter</creatorcontrib><creatorcontrib>Prastawa, Marcel</creatorcontrib><creatorcontrib>Davis, Brad</creatorcontrib><creatorcontrib>Gerig, Guido</creatorcontrib><creatorcontrib>Bullitt, Elizabeth</creatorcontrib><creatorcontrib>Joshi, Sarang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lorenzen, Peter</au><au>Prastawa, Marcel</au><au>Davis, Brad</au><au>Gerig, Guido</au><au>Bullitt, Elizabeth</au><au>Joshi, Sarang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-modal image set registration and atlas formation</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2006-06-01</date><risdate>2006</risdate><volume>10</volume><issue>3</issue><spage>440</spage><epage>451</epage><pages>440-451</pages><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>In this paper, we present a Bayesian framework for both generating inter-subject large deformation transformations between two multi-modal image sets of the brain and for forming multi-class brain atlases. In this framework, the estimated transformations are generated using maximal information about the underlying neuroanatomy present in each of the different modalities. This modality independent registration framework is achieved by jointly estimating the posterior probabilities associated with the multi-modal image sets and the high-dimensional registration transformations mapping these posteriors. To maximally use the information present in all the modalities for registration, Kullback–Leibler divergence between the estimated posteriors is minimized. Registration results for image sets composed of multi-modal MR images of healthy adult human brains are presented. Atlas formation results are presented for a population of five infant human brains.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>15919231</pmid><doi>10.1016/j.media.2005.03.002</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1361-8415
ispartof Medical image analysis, 2006-06, Vol.10 (3), p.440-451
issn 1361-8415
1361-8423
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2430608
source ScienceDirect Freedom Collection 2022-2024
subjects Algorithms
Artificial Intelligence
Atlas formation
Brain - anatomy & histology
Computational anatomy
Databases, Factual
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Information Storage and Retrieval - methods
Information theory
Inverse consistent registration
Magnetic Resonance Imaging - methods
Medical image analysis
Multi-modal image set registration
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
Subtraction Technique
title Multi-modal image set registration and atlas formation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A00%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-modal%20image%20set%20registration%20and%20atlas%20formation&rft.jtitle=Medical%20image%20analysis&rft.au=Lorenzen,%20Peter&rft.date=2006-06-01&rft.volume=10&rft.issue=3&rft.spage=440&rft.epage=451&rft.pages=440-451&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2005.03.002&rft_dat=%3Cproquest_pubme%3E19444740%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c488t-7600f00d0b78305307d1ea9c4e8f24cb25ed58c1d5dc03750141a59b74c424d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19444740&rft_id=info:pmid/15919231&rfr_iscdi=true