Loading…
Multi-modal image set registration and atlas formation
In this paper, we present a Bayesian framework for both generating inter-subject large deformation transformations between two multi-modal image sets of the brain and for forming multi-class brain atlases. In this framework, the estimated transformations are generated using maximal information about...
Saved in:
Published in: | Medical image analysis 2006-06, Vol.10 (3), p.440-451 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c488t-7600f00d0b78305307d1ea9c4e8f24cb25ed58c1d5dc03750141a59b74c424d93 |
---|---|
cites | cdi_FETCH-LOGICAL-c488t-7600f00d0b78305307d1ea9c4e8f24cb25ed58c1d5dc03750141a59b74c424d93 |
container_end_page | 451 |
container_issue | 3 |
container_start_page | 440 |
container_title | Medical image analysis |
container_volume | 10 |
creator | Lorenzen, Peter Prastawa, Marcel Davis, Brad Gerig, Guido Bullitt, Elizabeth Joshi, Sarang |
description | In this paper, we present a Bayesian framework for both generating inter-subject large deformation transformations between two multi-modal image sets of the brain and for forming multi-class brain atlases. In this framework, the estimated transformations are generated using maximal information about the underlying neuroanatomy present in each of the different modalities. This modality independent registration framework is achieved by jointly estimating the posterior probabilities associated with the multi-modal image sets and the high-dimensional registration transformations mapping these posteriors. To maximally use the information present in all the modalities for registration, Kullback–Leibler divergence between the estimated posteriors is minimized. Registration results for image sets composed of multi-modal MR images of healthy adult human brains are presented. Atlas formation results are presented for a population of five infant human brains. |
doi_str_mv | 10.1016/j.media.2005.03.002 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2430608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841505000447</els_id><sourcerecordid>19444740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-7600f00d0b78305307d1ea9c4e8f24cb25ed58c1d5dc03750141a59b74c424d93</originalsourceid><addsrcrecordid>eNqFkUlPwzAQhS0EoqXwC5BQTtwSxrGd5QASQmwSiAucLdeeFFdJXOwUiX-Pu4jlAidb9jdv3swj5JhCRoEWZ_OsQ2NVlgOIDFgGkO-QMWUFTSues92vOxUjchDCHABKzmGfjKioaZ0zOibF47IdbNo5o9rEdmqGScAh8TizYfBqsK5PVG8SNbQqJI3z3frtkOw1qg14tD0n5OXm-vnqLn14ur2_unxINa-qIS0LgAbAwLSsGAgGpaGoas2xanKup7lAIypNjTAaWCmAcqpEPS255jk3NZuQi43uYjmN02rso6lWLny06j-kU1b-_untq5y5d5lzBgVUUeB0K-Dd2xLDIDsbNLat6tEtgyzKmvK4ln9BWnPOSw4RZBtQexeCx-bLDQW5CkbO5ToYuQpGApMxmFh18nOQ75ptEhE43wAY1_lu0cugLfY6KnnUgzTO_tngE49Rn5M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19444740</pqid></control><display><type>article</type><title>Multi-modal image set registration and atlas formation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Lorenzen, Peter ; Prastawa, Marcel ; Davis, Brad ; Gerig, Guido ; Bullitt, Elizabeth ; Joshi, Sarang</creator><creatorcontrib>Lorenzen, Peter ; Prastawa, Marcel ; Davis, Brad ; Gerig, Guido ; Bullitt, Elizabeth ; Joshi, Sarang</creatorcontrib><description>In this paper, we present a Bayesian framework for both generating inter-subject large deformation transformations between two multi-modal image sets of the brain and for forming multi-class brain atlases. In this framework, the estimated transformations are generated using maximal information about the underlying neuroanatomy present in each of the different modalities. This modality independent registration framework is achieved by jointly estimating the posterior probabilities associated with the multi-modal image sets and the high-dimensional registration transformations mapping these posteriors. To maximally use the information present in all the modalities for registration, Kullback–Leibler divergence between the estimated posteriors is minimized. Registration results for image sets composed of multi-modal MR images of healthy adult human brains are presented. Atlas formation results are presented for a population of five infant human brains.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2005.03.002</identifier><identifier>PMID: 15919231</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Artificial Intelligence ; Atlas formation ; Brain - anatomy & histology ; Computational anatomy ; Databases, Factual ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Information Storage and Retrieval - methods ; Information theory ; Inverse consistent registration ; Magnetic Resonance Imaging - methods ; Medical image analysis ; Multi-modal image set registration ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Subtraction Technique</subject><ispartof>Medical image analysis, 2006-06, Vol.10 (3), p.440-451</ispartof><rights>2005 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-7600f00d0b78305307d1ea9c4e8f24cb25ed58c1d5dc03750141a59b74c424d93</citedby><cites>FETCH-LOGICAL-c488t-7600f00d0b78305307d1ea9c4e8f24cb25ed58c1d5dc03750141a59b74c424d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15919231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lorenzen, Peter</creatorcontrib><creatorcontrib>Prastawa, Marcel</creatorcontrib><creatorcontrib>Davis, Brad</creatorcontrib><creatorcontrib>Gerig, Guido</creatorcontrib><creatorcontrib>Bullitt, Elizabeth</creatorcontrib><creatorcontrib>Joshi, Sarang</creatorcontrib><title>Multi-modal image set registration and atlas formation</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>In this paper, we present a Bayesian framework for both generating inter-subject large deformation transformations between two multi-modal image sets of the brain and for forming multi-class brain atlases. In this framework, the estimated transformations are generated using maximal information about the underlying neuroanatomy present in each of the different modalities. This modality independent registration framework is achieved by jointly estimating the posterior probabilities associated with the multi-modal image sets and the high-dimensional registration transformations mapping these posteriors. To maximally use the information present in all the modalities for registration, Kullback–Leibler divergence between the estimated posteriors is minimized. Registration results for image sets composed of multi-modal MR images of healthy adult human brains are presented. Atlas formation results are presented for a population of five infant human brains.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Atlas formation</subject><subject>Brain - anatomy & histology</subject><subject>Computational anatomy</subject><subject>Databases, Factual</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information theory</subject><subject>Inverse consistent registration</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical image analysis</subject><subject>Multi-modal image set registration</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Subtraction Technique</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkUlPwzAQhS0EoqXwC5BQTtwSxrGd5QASQmwSiAucLdeeFFdJXOwUiX-Pu4jlAidb9jdv3swj5JhCRoEWZ_OsQ2NVlgOIDFgGkO-QMWUFTSues92vOxUjchDCHABKzmGfjKioaZ0zOibF47IdbNo5o9rEdmqGScAh8TizYfBqsK5PVG8SNbQqJI3z3frtkOw1qg14tD0n5OXm-vnqLn14ur2_unxINa-qIS0LgAbAwLSsGAgGpaGoas2xanKup7lAIypNjTAaWCmAcqpEPS255jk3NZuQi43uYjmN02rso6lWLny06j-kU1b-_untq5y5d5lzBgVUUeB0K-Dd2xLDIDsbNLat6tEtgyzKmvK4ln9BWnPOSw4RZBtQexeCx-bLDQW5CkbO5ToYuQpGApMxmFh18nOQ75ptEhE43wAY1_lu0cugLfY6KnnUgzTO_tngE49Rn5M</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Lorenzen, Peter</creator><creator>Prastawa, Marcel</creator><creator>Davis, Brad</creator><creator>Gerig, Guido</creator><creator>Bullitt, Elizabeth</creator><creator>Joshi, Sarang</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060601</creationdate><title>Multi-modal image set registration and atlas formation</title><author>Lorenzen, Peter ; Prastawa, Marcel ; Davis, Brad ; Gerig, Guido ; Bullitt, Elizabeth ; Joshi, Sarang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-7600f00d0b78305307d1ea9c4e8f24cb25ed58c1d5dc03750141a59b74c424d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Atlas formation</topic><topic>Brain - anatomy & histology</topic><topic>Computational anatomy</topic><topic>Databases, Factual</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information theory</topic><topic>Inverse consistent registration</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical image analysis</topic><topic>Multi-modal image set registration</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Subtraction Technique</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lorenzen, Peter</creatorcontrib><creatorcontrib>Prastawa, Marcel</creatorcontrib><creatorcontrib>Davis, Brad</creatorcontrib><creatorcontrib>Gerig, Guido</creatorcontrib><creatorcontrib>Bullitt, Elizabeth</creatorcontrib><creatorcontrib>Joshi, Sarang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lorenzen, Peter</au><au>Prastawa, Marcel</au><au>Davis, Brad</au><au>Gerig, Guido</au><au>Bullitt, Elizabeth</au><au>Joshi, Sarang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-modal image set registration and atlas formation</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2006-06-01</date><risdate>2006</risdate><volume>10</volume><issue>3</issue><spage>440</spage><epage>451</epage><pages>440-451</pages><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>In this paper, we present a Bayesian framework for both generating inter-subject large deformation transformations between two multi-modal image sets of the brain and for forming multi-class brain atlases. In this framework, the estimated transformations are generated using maximal information about the underlying neuroanatomy present in each of the different modalities. This modality independent registration framework is achieved by jointly estimating the posterior probabilities associated with the multi-modal image sets and the high-dimensional registration transformations mapping these posteriors. To maximally use the information present in all the modalities for registration, Kullback–Leibler divergence between the estimated posteriors is minimized. Registration results for image sets composed of multi-modal MR images of healthy adult human brains are presented. Atlas formation results are presented for a population of five infant human brains.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>15919231</pmid><doi>10.1016/j.media.2005.03.002</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-8415 |
ispartof | Medical image analysis, 2006-06, Vol.10 (3), p.440-451 |
issn | 1361-8415 1361-8423 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2430608 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Algorithms Artificial Intelligence Atlas formation Brain - anatomy & histology Computational anatomy Databases, Factual Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods Information Storage and Retrieval - methods Information theory Inverse consistent registration Magnetic Resonance Imaging - methods Medical image analysis Multi-modal image set registration Pattern Recognition, Automated - methods Reproducibility of Results Sensitivity and Specificity Subtraction Technique |
title | Multi-modal image set registration and atlas formation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A00%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-modal%20image%20set%20registration%20and%20atlas%20formation&rft.jtitle=Medical%20image%20analysis&rft.au=Lorenzen,%20Peter&rft.date=2006-06-01&rft.volume=10&rft.issue=3&rft.spage=440&rft.epage=451&rft.pages=440-451&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2005.03.002&rft_dat=%3Cproquest_pubme%3E19444740%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c488t-7600f00d0b78305307d1ea9c4e8f24cb25ed58c1d5dc03750141a59b74c424d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19444740&rft_id=info:pmid/15919231&rfr_iscdi=true |