Loading…
Influence of Lipid Saturation Grade and Headgroup Charge: A Refined Lung Surfactant Adsorption Model
Rapid adsorption of surfactant material to the air/liquid interface of the lung is essential for maintaining normal lung function. The detailed mechanism of this process, however, remains unclear. In this study, we elucidate the influence of lipid saturation grade and headgroup charge of surface lay...
Saved in:
Published in: | Biophysical journal 2008-07, Vol.95 (2), p.699-709 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c517t-66739870e400523820b678d190ba761dbb2d6815c42addda2a9e550d92f8144f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c517t-66739870e400523820b678d190ba761dbb2d6815c42addda2a9e550d92f8144f3 |
container_end_page | 709 |
container_issue | 2 |
container_start_page | 699 |
container_title | Biophysical journal |
container_volume | 95 |
creator | Klenz, U. Saleem, M. Meyer, M.C. Galla, H.-J. |
description | Rapid adsorption of surfactant material to the air/liquid interface of the lung is essential for maintaining normal lung function. The detailed mechanism of this process, however, remains unclear. In this study, we elucidate the influence of lipid saturation grade and headgroup charge of surface layer lipids on surfactant protein (SP)-induced vesicle insertion into monolayers spread at the air/water interface of a film balance. We used dipalmitoylphosphatidlycholine (DPPC),1,2-dipalmitoyl-
sn-glycero-3-phosphoglycerol (DPPG), 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphocholine (POPC), and 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphoglycerol (POPG) as monolayer lipids doped with either hydrophobic surfactant-specific protein SP-B or SP-C (0.2 and 0.4
mol %, respectively). Vesicles consisting of DPPC/DPPG (4:1, mol ratio) were injected into a stirred subphase to quantify adsorption kinetics. Based on kinetic film balance and fluorescence measurements, a refined model describing distinct steps of vesicle adsorption to surfactant monolayers is presented. First, in a protein-independent step, lipids from vesicles bridged to the interfacial film by Ca
2+ ions are inserted into defects of a disordered monolayer at low surface pressures. Second, in a SP-facilitated step, active material insertion involving an SP-B- or SP-C-induced flip-flop of lipids occurs at higher surface pressures. Negatively charged lipids obviously influence the threshold pressures at which this second protein-mediated adsorption mechanism takes place. |
doi_str_mv | 10.1529/biophysj.108.131102 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2440443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349508702455</els_id><sourcerecordid>1531298811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-66739870e400523820b678d190ba761dbb2d6815c42addda2a9e550d92f8144f3</originalsourceid><addsrcrecordid>eNp9kV2LEzEUhoMobnf1FwgSvBBvWnPyNYmgUMq6u1ARXL0OmUmmTZkmYzKzsP_eqa2fF3sVSJ7z5JzzIvQCyAIE1W_rkPrtfdktgKgFMABCH6EZCE7nhCj5GM0IIXLOuBZn6LyUHSFABYGn6AwU00SCniF3E9tu9LHxOLV4Hfrg8K0dxmyHkCK-ytZ5bKPD1966TU5jj1dbmzf-HV7iL74N0Tu8HuMG3465tc1g44CXrqTc_xR8Ss53z9CT1nbFPz-dF-jbx8uvq-v5-vPVzWq5njcCqmEuZcW0qojnhAjKFCW1rJQDTWpbSXB1TZ1UIBpOrXPOUqu9EMRp2irgvGUX6MPR24_13rvGxyHbzvQ57G2-N8kG8-9LDFuzSXeGck44Z5Pg9UmQ0_fRl8HsQ2l819no01iM1FQoTukEvnkQBFkBlUwwOaGv_kN3acxx2oOhICajhoOPHaEmp1Kyb383DcQc0ja_0p4ulDmmPVW9_HvePzWneCfg_RHw09bvgs-mNOEQtgvZN4NxKTz4wQ_zkbxs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215692912</pqid></control><display><type>article</type><title>Influence of Lipid Saturation Grade and Headgroup Charge: A Refined Lung Surfactant Adsorption Model</title><source>PMC (PubMed Central)</source><creator>Klenz, U. ; Saleem, M. ; Meyer, M.C. ; Galla, H.-J.</creator><creatorcontrib>Klenz, U. ; Saleem, M. ; Meyer, M.C. ; Galla, H.-J.</creatorcontrib><description>Rapid adsorption of surfactant material to the air/liquid interface of the lung is essential for maintaining normal lung function. The detailed mechanism of this process, however, remains unclear. In this study, we elucidate the influence of lipid saturation grade and headgroup charge of surface layer lipids on surfactant protein (SP)-induced vesicle insertion into monolayers spread at the air/water interface of a film balance. We used dipalmitoylphosphatidlycholine (DPPC),1,2-dipalmitoyl-
sn-glycero-3-phosphoglycerol (DPPG), 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphocholine (POPC), and 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphoglycerol (POPG) as monolayer lipids doped with either hydrophobic surfactant-specific protein SP-B or SP-C (0.2 and 0.4
mol %, respectively). Vesicles consisting of DPPC/DPPG (4:1, mol ratio) were injected into a stirred subphase to quantify adsorption kinetics. Based on kinetic film balance and fluorescence measurements, a refined model describing distinct steps of vesicle adsorption to surfactant monolayers is presented. First, in a protein-independent step, lipids from vesicles bridged to the interfacial film by Ca
2+ ions are inserted into defects of a disordered monolayer at low surface pressures. Second, in a SP-facilitated step, active material insertion involving an SP-B- or SP-C-induced flip-flop of lipids occurs at higher surface pressures. Negatively charged lipids obviously influence the threshold pressures at which this second protein-mediated adsorption mechanism takes place.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.108.131102</identifier><identifier>PMID: 18390619</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adsorption ; Biomimetic Materials - chemistry ; Lipids ; Liposomes - chemistry ; Lungs ; Mathematical models ; Membranes ; Models, Biological ; Monolayers ; Phospholipids - chemistry ; Proteins ; Pulmonary Surfactants - chemistry ; Static Electricity ; Surface chemistry ; Surfactants ; Vesicles</subject><ispartof>Biophysical journal, 2008-07, Vol.95 (2), p.699-709</ispartof><rights>2008 The Biophysical Society</rights><rights>Copyright Biophysical Society Jul 15, 2008</rights><rights>Copyright © 2008, Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-66739870e400523820b678d190ba761dbb2d6815c42addda2a9e550d92f8144f3</citedby><cites>FETCH-LOGICAL-c517t-66739870e400523820b678d190ba761dbb2d6815c42addda2a9e550d92f8144f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2440443/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2440443/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18390619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klenz, U.</creatorcontrib><creatorcontrib>Saleem, M.</creatorcontrib><creatorcontrib>Meyer, M.C.</creatorcontrib><creatorcontrib>Galla, H.-J.</creatorcontrib><title>Influence of Lipid Saturation Grade and Headgroup Charge: A Refined Lung Surfactant Adsorption Model</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Rapid adsorption of surfactant material to the air/liquid interface of the lung is essential for maintaining normal lung function. The detailed mechanism of this process, however, remains unclear. In this study, we elucidate the influence of lipid saturation grade and headgroup charge of surface layer lipids on surfactant protein (SP)-induced vesicle insertion into monolayers spread at the air/water interface of a film balance. We used dipalmitoylphosphatidlycholine (DPPC),1,2-dipalmitoyl-
sn-glycero-3-phosphoglycerol (DPPG), 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphocholine (POPC), and 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphoglycerol (POPG) as monolayer lipids doped with either hydrophobic surfactant-specific protein SP-B or SP-C (0.2 and 0.4
mol %, respectively). Vesicles consisting of DPPC/DPPG (4:1, mol ratio) were injected into a stirred subphase to quantify adsorption kinetics. Based on kinetic film balance and fluorescence measurements, a refined model describing distinct steps of vesicle adsorption to surfactant monolayers is presented. First, in a protein-independent step, lipids from vesicles bridged to the interfacial film by Ca
2+ ions are inserted into defects of a disordered monolayer at low surface pressures. Second, in a SP-facilitated step, active material insertion involving an SP-B- or SP-C-induced flip-flop of lipids occurs at higher surface pressures. Negatively charged lipids obviously influence the threshold pressures at which this second protein-mediated adsorption mechanism takes place.</description><subject>Adsorption</subject><subject>Biomimetic Materials - chemistry</subject><subject>Lipids</subject><subject>Liposomes - chemistry</subject><subject>Lungs</subject><subject>Mathematical models</subject><subject>Membranes</subject><subject>Models, Biological</subject><subject>Monolayers</subject><subject>Phospholipids - chemistry</subject><subject>Proteins</subject><subject>Pulmonary Surfactants - chemistry</subject><subject>Static Electricity</subject><subject>Surface chemistry</subject><subject>Surfactants</subject><subject>Vesicles</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kV2LEzEUhoMobnf1FwgSvBBvWnPyNYmgUMq6u1ARXL0OmUmmTZkmYzKzsP_eqa2fF3sVSJ7z5JzzIvQCyAIE1W_rkPrtfdktgKgFMABCH6EZCE7nhCj5GM0IIXLOuBZn6LyUHSFABYGn6AwU00SCniF3E9tu9LHxOLV4Hfrg8K0dxmyHkCK-ytZ5bKPD1966TU5jj1dbmzf-HV7iL74N0Tu8HuMG3465tc1g44CXrqTc_xR8Ss53z9CT1nbFPz-dF-jbx8uvq-v5-vPVzWq5njcCqmEuZcW0qojnhAjKFCW1rJQDTWpbSXB1TZ1UIBpOrXPOUqu9EMRp2irgvGUX6MPR24_13rvGxyHbzvQ57G2-N8kG8-9LDFuzSXeGck44Z5Pg9UmQ0_fRl8HsQ2l819no01iM1FQoTukEvnkQBFkBlUwwOaGv_kN3acxx2oOhICajhoOPHaEmp1Kyb383DcQc0ja_0p4ulDmmPVW9_HvePzWneCfg_RHw09bvgs-mNOEQtgvZN4NxKTz4wQ_zkbxs</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Klenz, U.</creator><creator>Saleem, M.</creator><creator>Meyer, M.C.</creator><creator>Galla, H.-J.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200807</creationdate><title>Influence of Lipid Saturation Grade and Headgroup Charge: A Refined Lung Surfactant Adsorption Model</title><author>Klenz, U. ; Saleem, M. ; Meyer, M.C. ; Galla, H.-J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-66739870e400523820b678d190ba761dbb2d6815c42addda2a9e550d92f8144f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adsorption</topic><topic>Biomimetic Materials - chemistry</topic><topic>Lipids</topic><topic>Liposomes - chemistry</topic><topic>Lungs</topic><topic>Mathematical models</topic><topic>Membranes</topic><topic>Models, Biological</topic><topic>Monolayers</topic><topic>Phospholipids - chemistry</topic><topic>Proteins</topic><topic>Pulmonary Surfactants - chemistry</topic><topic>Static Electricity</topic><topic>Surface chemistry</topic><topic>Surfactants</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klenz, U.</creatorcontrib><creatorcontrib>Saleem, M.</creatorcontrib><creatorcontrib>Meyer, M.C.</creatorcontrib><creatorcontrib>Galla, H.-J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klenz, U.</au><au>Saleem, M.</au><au>Meyer, M.C.</au><au>Galla, H.-J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Lipid Saturation Grade and Headgroup Charge: A Refined Lung Surfactant Adsorption Model</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2008-07</date><risdate>2008</risdate><volume>95</volume><issue>2</issue><spage>699</spage><epage>709</epage><pages>699-709</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Rapid adsorption of surfactant material to the air/liquid interface of the lung is essential for maintaining normal lung function. The detailed mechanism of this process, however, remains unclear. In this study, we elucidate the influence of lipid saturation grade and headgroup charge of surface layer lipids on surfactant protein (SP)-induced vesicle insertion into monolayers spread at the air/water interface of a film balance. We used dipalmitoylphosphatidlycholine (DPPC),1,2-dipalmitoyl-
sn-glycero-3-phosphoglycerol (DPPG), 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphocholine (POPC), and 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphoglycerol (POPG) as monolayer lipids doped with either hydrophobic surfactant-specific protein SP-B or SP-C (0.2 and 0.4
mol %, respectively). Vesicles consisting of DPPC/DPPG (4:1, mol ratio) were injected into a stirred subphase to quantify adsorption kinetics. Based on kinetic film balance and fluorescence measurements, a refined model describing distinct steps of vesicle adsorption to surfactant monolayers is presented. First, in a protein-independent step, lipids from vesicles bridged to the interfacial film by Ca
2+ ions are inserted into defects of a disordered monolayer at low surface pressures. Second, in a SP-facilitated step, active material insertion involving an SP-B- or SP-C-induced flip-flop of lipids occurs at higher surface pressures. Negatively charged lipids obviously influence the threshold pressures at which this second protein-mediated adsorption mechanism takes place.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18390619</pmid><doi>10.1529/biophysj.108.131102</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2008-07, Vol.95 (2), p.699-709 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2440443 |
source | PMC (PubMed Central) |
subjects | Adsorption Biomimetic Materials - chemistry Lipids Liposomes - chemistry Lungs Mathematical models Membranes Models, Biological Monolayers Phospholipids - chemistry Proteins Pulmonary Surfactants - chemistry Static Electricity Surface chemistry Surfactants Vesicles |
title | Influence of Lipid Saturation Grade and Headgroup Charge: A Refined Lung Surfactant Adsorption Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Lipid%20Saturation%20Grade%20and%20Headgroup%20Charge:%20A%20Refined%20Lung%20Surfactant%20Adsorption%20Model&rft.jtitle=Biophysical%20journal&rft.au=Klenz,%20U.&rft.date=2008-07&rft.volume=95&rft.issue=2&rft.spage=699&rft.epage=709&rft.pages=699-709&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.108.131102&rft_dat=%3Cproquest_pubme%3E1531298811%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-66739870e400523820b678d190ba761dbb2d6815c42addda2a9e550d92f8144f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215692912&rft_id=info:pmid/18390619&rfr_iscdi=true |