Loading…

Ternary Kv4.2 channels recapitulate voltage-dependent inactivation kinetics of A-type K+ channels in cerebellar granule neurons

Kv4 channels mediate most of the somatodendritic subthreshold operating A-type current ( I SA ) in neurons. This current plays essential roles in the regulation of spike timing, repetitive firing, dendritic integration and plasticity. Neuronal Kv4 channels are thought to be ternary complexes of Kv4...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of physiology 2008-04, Vol.586 (8), p.2093-2106
Main Authors: Amarillo, Yimy, De Santiago‐Castillo, Jose A., Dougherty, Kevin, Maffie, Jonathon, Kwon, Elaine, Covarrubias, Manuel, Rudy, Bernardo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5861-4f15c3bb68ae5bdd17f7f64e4edd88f206412cbef61d3e8b29aff394457d42013
cites cdi_FETCH-LOGICAL-c5861-4f15c3bb68ae5bdd17f7f64e4edd88f206412cbef61d3e8b29aff394457d42013
container_end_page 2106
container_issue 8
container_start_page 2093
container_title The Journal of physiology
container_volume 586
creator Amarillo, Yimy
De Santiago‐Castillo, Jose A.
Dougherty, Kevin
Maffie, Jonathon
Kwon, Elaine
Covarrubias, Manuel
Rudy, Bernardo
description Kv4 channels mediate most of the somatodendritic subthreshold operating A-type current ( I SA ) in neurons. This current plays essential roles in the regulation of spike timing, repetitive firing, dendritic integration and plasticity. Neuronal Kv4 channels are thought to be ternary complexes of Kv4 pore-forming subunits and two types of accessory proteins, Kv channel interacting proteins (KChIPs) and the dipeptidyl-peptidase-like proteins (DPPLs) DPPX (DPP6) and DPP10. In heterologous cells, ternary Kv4 channels exhibit inactivation that slows down with increasing depolarization. Here, we compared the voltage dependence of the inactivation rate of channels expressed in heterologous mammalian cells by Kv4.2 proteins with that of channels containing Kv4.2 and KChIP1, Kv4.2 and DPPX-S, or Kv4.2, KChIP1 and DPPX-S, and found that the relation between inactivation rate and membrane potential is distinct for these four conditions. Moreover, recordings from native neurons showed that the inactivation kinetics of the I SA in cerebellar granule neurons has voltage dependence that is remarkably similar to that of ternary Kv4 channels containing KChIP1 and DPPX-S proteins in heterologous cells. The fact that this complex and unique behaviour (among A-type K + currents) is observed in both the native current and the current expressed in heterologous cells by the ternary complex containing Kv4, DPPX and KChIP proteins supports the hypothesis that somatically recorded native Kv4 channels in neurons include both types of accessory protein. Furthermore, quantitative global kinetic modelling showed that preferential closed-state inactivation and a weakly voltage-dependent opening step can explain the slowing of the inactivation rate with increasing depolarization. Therefore, it is likely that preferential closed-state inactivation is the physiological mechanism that regulates the activity of both ternary Kv4 channel complexes and native I SA -mediating channels.
doi_str_mv 10.1113/jphysiol.2007.150540
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2465190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69102203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5861-4f15c3bb68ae5bdd17f7f64e4edd88f206412cbef61d3e8b29aff394457d42013</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhSMEokPhHyDkFaqEMviVhzdIVcWzlWAxrC3HuZ64eOxgJ1NlxV8nUQYKK1h54XOOzrlflj0neEsIYa9v-25KNrgtxbjakgIXHD_INoSXIq8qwR5mG4wpzVlVkLPsSUq3GBOGhXicnZGaVmVFxSb7sYPoVZzQ9ZFvKdKd8h5cQhG06u0wOjUAOgY3qD3kLfTgW_ADsl7pwR7VYINH36yHweqEgkGX-TD1gK5f3UdZjzREaMA5FdE-Kj86QB7GGHx6mj0yyiV4dnrPs6_v3u6uPuQ3n99_vLq8yXVRlyTnhhSaNU1ZKyiatiWVqUzJgUPb1rWhuOSE6gZMSVoGdUOFMoYJzouq5XTefZ69WXP7sTlAq-cRUTnZR3uY18ugrPz7x9tO7sNRUl4WROA54OUpIIbvI6RBHmzSyyYPYUyyFGS-Nmb_FFJc85rzpRJfhTqGlCKY320Ilgti-QuxXBDLFfFse_HnknvTieksEKvgzjqY_itU7j59oTVbOl2s3s7uuzsbQa7qFLSFYZIzDFnPTsHYT6vhyI0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20848441</pqid></control><display><type>article</type><title>Ternary Kv4.2 channels recapitulate voltage-dependent inactivation kinetics of A-type K+ channels in cerebellar granule neurons</title><source>Wiley</source><source>PubMed Central(OpenAccess)</source><creator>Amarillo, Yimy ; De Santiago‐Castillo, Jose A. ; Dougherty, Kevin ; Maffie, Jonathon ; Kwon, Elaine ; Covarrubias, Manuel ; Rudy, Bernardo</creator><creatorcontrib>Amarillo, Yimy ; De Santiago‐Castillo, Jose A. ; Dougherty, Kevin ; Maffie, Jonathon ; Kwon, Elaine ; Covarrubias, Manuel ; Rudy, Bernardo</creatorcontrib><description>Kv4 channels mediate most of the somatodendritic subthreshold operating A-type current ( I SA ) in neurons. This current plays essential roles in the regulation of spike timing, repetitive firing, dendritic integration and plasticity. Neuronal Kv4 channels are thought to be ternary complexes of Kv4 pore-forming subunits and two types of accessory proteins, Kv channel interacting proteins (KChIPs) and the dipeptidyl-peptidase-like proteins (DPPLs) DPPX (DPP6) and DPP10. In heterologous cells, ternary Kv4 channels exhibit inactivation that slows down with increasing depolarization. Here, we compared the voltage dependence of the inactivation rate of channels expressed in heterologous mammalian cells by Kv4.2 proteins with that of channels containing Kv4.2 and KChIP1, Kv4.2 and DPPX-S, or Kv4.2, KChIP1 and DPPX-S, and found that the relation between inactivation rate and membrane potential is distinct for these four conditions. Moreover, recordings from native neurons showed that the inactivation kinetics of the I SA in cerebellar granule neurons has voltage dependence that is remarkably similar to that of ternary Kv4 channels containing KChIP1 and DPPX-S proteins in heterologous cells. The fact that this complex and unique behaviour (among A-type K + currents) is observed in both the native current and the current expressed in heterologous cells by the ternary complex containing Kv4, DPPX and KChIP proteins supports the hypothesis that somatically recorded native Kv4 channels in neurons include both types of accessory protein. Furthermore, quantitative global kinetic modelling showed that preferential closed-state inactivation and a weakly voltage-dependent opening step can explain the slowing of the inactivation rate with increasing depolarization. Therefore, it is likely that preferential closed-state inactivation is the physiological mechanism that regulates the activity of both ternary Kv4 channel complexes and native I SA -mediating channels.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2007.150540</identifier><identifier>PMID: 18276729</identifier><language>eng</language><publisher>Oxford, UK: The Physiological Society</publisher><subject>Animals ; Cell Line ; Cerebellum - metabolism ; Humans ; Ion Channel Gating - physiology ; Kinetics ; Membrane Potentials - physiology ; Mice ; Neurons - metabolism ; Neuroscience ; Shal Potassium Channels - physiology</subject><ispartof>The Journal of physiology, 2008-04, Vol.586 (8), p.2093-2106</ispartof><rights>2008 The Authors. Journal compilation © 2008 The Physiological Society</rights><rights>2008 The Authors. Journal compilation © 2008 The Physiological Society 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5861-4f15c3bb68ae5bdd17f7f64e4edd88f206412cbef61d3e8b29aff394457d42013</citedby><cites>FETCH-LOGICAL-c5861-4f15c3bb68ae5bdd17f7f64e4edd88f206412cbef61d3e8b29aff394457d42013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2465190/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2465190/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18276729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amarillo, Yimy</creatorcontrib><creatorcontrib>De Santiago‐Castillo, Jose A.</creatorcontrib><creatorcontrib>Dougherty, Kevin</creatorcontrib><creatorcontrib>Maffie, Jonathon</creatorcontrib><creatorcontrib>Kwon, Elaine</creatorcontrib><creatorcontrib>Covarrubias, Manuel</creatorcontrib><creatorcontrib>Rudy, Bernardo</creatorcontrib><title>Ternary Kv4.2 channels recapitulate voltage-dependent inactivation kinetics of A-type K+ channels in cerebellar granule neurons</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>Kv4 channels mediate most of the somatodendritic subthreshold operating A-type current ( I SA ) in neurons. This current plays essential roles in the regulation of spike timing, repetitive firing, dendritic integration and plasticity. Neuronal Kv4 channels are thought to be ternary complexes of Kv4 pore-forming subunits and two types of accessory proteins, Kv channel interacting proteins (KChIPs) and the dipeptidyl-peptidase-like proteins (DPPLs) DPPX (DPP6) and DPP10. In heterologous cells, ternary Kv4 channels exhibit inactivation that slows down with increasing depolarization. Here, we compared the voltage dependence of the inactivation rate of channels expressed in heterologous mammalian cells by Kv4.2 proteins with that of channels containing Kv4.2 and KChIP1, Kv4.2 and DPPX-S, or Kv4.2, KChIP1 and DPPX-S, and found that the relation between inactivation rate and membrane potential is distinct for these four conditions. Moreover, recordings from native neurons showed that the inactivation kinetics of the I SA in cerebellar granule neurons has voltage dependence that is remarkably similar to that of ternary Kv4 channels containing KChIP1 and DPPX-S proteins in heterologous cells. The fact that this complex and unique behaviour (among A-type K + currents) is observed in both the native current and the current expressed in heterologous cells by the ternary complex containing Kv4, DPPX and KChIP proteins supports the hypothesis that somatically recorded native Kv4 channels in neurons include both types of accessory protein. Furthermore, quantitative global kinetic modelling showed that preferential closed-state inactivation and a weakly voltage-dependent opening step can explain the slowing of the inactivation rate with increasing depolarization. Therefore, it is likely that preferential closed-state inactivation is the physiological mechanism that regulates the activity of both ternary Kv4 channel complexes and native I SA -mediating channels.</description><subject>Animals</subject><subject>Cell Line</subject><subject>Cerebellum - metabolism</subject><subject>Humans</subject><subject>Ion Channel Gating - physiology</subject><subject>Kinetics</subject><subject>Membrane Potentials - physiology</subject><subject>Mice</subject><subject>Neurons - metabolism</subject><subject>Neuroscience</subject><subject>Shal Potassium Channels - physiology</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkUtv1DAUhSMEokPhHyDkFaqEMviVhzdIVcWzlWAxrC3HuZ64eOxgJ1NlxV8nUQYKK1h54XOOzrlflj0neEsIYa9v-25KNrgtxbjakgIXHD_INoSXIq8qwR5mG4wpzVlVkLPsSUq3GBOGhXicnZGaVmVFxSb7sYPoVZzQ9ZFvKdKd8h5cQhG06u0wOjUAOgY3qD3kLfTgW_ADsl7pwR7VYINH36yHweqEgkGX-TD1gK5f3UdZjzREaMA5FdE-Kj86QB7GGHx6mj0yyiV4dnrPs6_v3u6uPuQ3n99_vLq8yXVRlyTnhhSaNU1ZKyiatiWVqUzJgUPb1rWhuOSE6gZMSVoGdUOFMoYJzouq5XTefZ69WXP7sTlAq-cRUTnZR3uY18ugrPz7x9tO7sNRUl4WROA54OUpIIbvI6RBHmzSyyYPYUyyFGS-Nmb_FFJc85rzpRJfhTqGlCKY320Ilgti-QuxXBDLFfFse_HnknvTieksEKvgzjqY_itU7j59oTVbOl2s3s7uuzsbQa7qFLSFYZIzDFnPTsHYT6vhyI0</recordid><startdate>20080415</startdate><enddate>20080415</enddate><creator>Amarillo, Yimy</creator><creator>De Santiago‐Castillo, Jose A.</creator><creator>Dougherty, Kevin</creator><creator>Maffie, Jonathon</creator><creator>Kwon, Elaine</creator><creator>Covarrubias, Manuel</creator><creator>Rudy, Bernardo</creator><general>The Physiological Society</general><general>Blackwell Publishing Ltd</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080415</creationdate><title>Ternary Kv4.2 channels recapitulate voltage-dependent inactivation kinetics of A-type K+ channels in cerebellar granule neurons</title><author>Amarillo, Yimy ; De Santiago‐Castillo, Jose A. ; Dougherty, Kevin ; Maffie, Jonathon ; Kwon, Elaine ; Covarrubias, Manuel ; Rudy, Bernardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5861-4f15c3bb68ae5bdd17f7f64e4edd88f206412cbef61d3e8b29aff394457d42013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Cell Line</topic><topic>Cerebellum - metabolism</topic><topic>Humans</topic><topic>Ion Channel Gating - physiology</topic><topic>Kinetics</topic><topic>Membrane Potentials - physiology</topic><topic>Mice</topic><topic>Neurons - metabolism</topic><topic>Neuroscience</topic><topic>Shal Potassium Channels - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amarillo, Yimy</creatorcontrib><creatorcontrib>De Santiago‐Castillo, Jose A.</creatorcontrib><creatorcontrib>Dougherty, Kevin</creatorcontrib><creatorcontrib>Maffie, Jonathon</creatorcontrib><creatorcontrib>Kwon, Elaine</creatorcontrib><creatorcontrib>Covarrubias, Manuel</creatorcontrib><creatorcontrib>Rudy, Bernardo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amarillo, Yimy</au><au>De Santiago‐Castillo, Jose A.</au><au>Dougherty, Kevin</au><au>Maffie, Jonathon</au><au>Kwon, Elaine</au><au>Covarrubias, Manuel</au><au>Rudy, Bernardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ternary Kv4.2 channels recapitulate voltage-dependent inactivation kinetics of A-type K+ channels in cerebellar granule neurons</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2008-04-15</date><risdate>2008</risdate><volume>586</volume><issue>8</issue><spage>2093</spage><epage>2106</epage><pages>2093-2106</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><abstract>Kv4 channels mediate most of the somatodendritic subthreshold operating A-type current ( I SA ) in neurons. This current plays essential roles in the regulation of spike timing, repetitive firing, dendritic integration and plasticity. Neuronal Kv4 channels are thought to be ternary complexes of Kv4 pore-forming subunits and two types of accessory proteins, Kv channel interacting proteins (KChIPs) and the dipeptidyl-peptidase-like proteins (DPPLs) DPPX (DPP6) and DPP10. In heterologous cells, ternary Kv4 channels exhibit inactivation that slows down with increasing depolarization. Here, we compared the voltage dependence of the inactivation rate of channels expressed in heterologous mammalian cells by Kv4.2 proteins with that of channels containing Kv4.2 and KChIP1, Kv4.2 and DPPX-S, or Kv4.2, KChIP1 and DPPX-S, and found that the relation between inactivation rate and membrane potential is distinct for these four conditions. Moreover, recordings from native neurons showed that the inactivation kinetics of the I SA in cerebellar granule neurons has voltage dependence that is remarkably similar to that of ternary Kv4 channels containing KChIP1 and DPPX-S proteins in heterologous cells. The fact that this complex and unique behaviour (among A-type K + currents) is observed in both the native current and the current expressed in heterologous cells by the ternary complex containing Kv4, DPPX and KChIP proteins supports the hypothesis that somatically recorded native Kv4 channels in neurons include both types of accessory protein. Furthermore, quantitative global kinetic modelling showed that preferential closed-state inactivation and a weakly voltage-dependent opening step can explain the slowing of the inactivation rate with increasing depolarization. Therefore, it is likely that preferential closed-state inactivation is the physiological mechanism that regulates the activity of both ternary Kv4 channel complexes and native I SA -mediating channels.</abstract><cop>Oxford, UK</cop><pub>The Physiological Society</pub><pmid>18276729</pmid><doi>10.1113/jphysiol.2007.150540</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3751
ispartof The Journal of physiology, 2008-04, Vol.586 (8), p.2093-2106
issn 0022-3751
1469-7793
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2465190
source Wiley; PubMed Central(OpenAccess)
subjects Animals
Cell Line
Cerebellum - metabolism
Humans
Ion Channel Gating - physiology
Kinetics
Membrane Potentials - physiology
Mice
Neurons - metabolism
Neuroscience
Shal Potassium Channels - physiology
title Ternary Kv4.2 channels recapitulate voltage-dependent inactivation kinetics of A-type K+ channels in cerebellar granule neurons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ternary%20Kv4.2%20channels%20recapitulate%20voltage-dependent%20inactivation%20kinetics%20of%20A-type%20K+%20channels%20in%20cerebellar%20granule%20neurons&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Amarillo,%20Yimy&rft.date=2008-04-15&rft.volume=586&rft.issue=8&rft.spage=2093&rft.epage=2106&rft.pages=2093-2106&rft.issn=0022-3751&rft.eissn=1469-7793&rft_id=info:doi/10.1113/jphysiol.2007.150540&rft_dat=%3Cproquest_pubme%3E69102203%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5861-4f15c3bb68ae5bdd17f7f64e4edd88f206412cbef61d3e8b29aff394457d42013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20848441&rft_id=info:pmid/18276729&rfr_iscdi=true