Loading…
Modulation of beta-cell ouabain-sensitive 86Rb+ influx (Na+/K+ pump) by D-glucose, glibenclamide or diazoxide
The activity of the beta-cell Na+/K+ pump was studied by using ouabain-sensitive (1mM ouabain) 86Rb+ influx in beta-cell-rich islets of Umeå-ob/ob mice as an indicator of the pump function. The present results show that the stimulatory effect of glucose on ouabain-sensitive 86Rb+ influx reached its...
Saved in:
Published in: | International journal of experimental diabetes research 2001, Vol.1 (4), p.265-274 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The activity of the beta-cell Na+/K+ pump was studied by using ouabain-sensitive (1mM ouabain) 86Rb+ influx in beta-cell-rich islets of Umeå-ob/ob mice as an indicator of the pump function. The present results show that the stimulatory effect of glucose on ouabain-sensitive 86Rb+ influx reached its approximate maximum at 5mM glucose. Pre-treatment of the islets with 20mM glucose for 60 min strongly reduced the glucose-induced stimulation of the Na+/K+ pump. Pre-treatment (60 or 180 min) of islets at 0 mM glucose, on the other hand, did not affect the magnitude of the glucose-induced stimulation of 86Rb+ influx during the subsequent 5-min incubation. Glibenclamide stimulated the ouabain-sensitive 86Rb+ uptake in the same manner as glucose. The stimulatory effect showed its apparent maximum at 0.5 microM. Pre-treatment (60 min) of islets with 1 microM glibenclamide did not reduce the subsequent stimulation of the ouabain-sensitive 86Rb+ influx. The stimulatory effect of glibenclamide and D-glucose were not additive, suggesting that they may have the same mechanism of action. No direct effect of glibenclamide (0.01-1 microM) was observed on the Na+/K+ ATPase activity in homogenates of islets. Diazoxide (0.4mM) inhibited the Na+/K+ pump. This effect was sustained even after 60 min of pre-treatment of islets with 0.4mM diazoxide. The stimulatory effect of glibenclamide and D-glucose were abolished by diazoxide. It is concluded that nutrient as well as non-nutrient insulin secretagogues activate the Na+/K+ pump, probably as part of the membrane repolarisation process. |
---|---|
ISSN: | 1560-4284 |
DOI: | 10.1155/edr.2000.265 |