Loading…
Gut hyperpermiability after ischemia and reperfusion: attenuation with adrenomedullin and its binding protein treatment
Ischemia bowel remains a critical problem resulting in up to 80% mortality. The loss of gut barrier function plays an important role. Our previous studies have shown that administration of adrenomedullin (AM), a novel vasoactive peptide, and its binding protein (AMBP-1), reduces the systemic inflamm...
Saved in:
Published in: | International journal of clinical and experimental pathology 2008-01, Vol.1 (5), p.409-418 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ischemia bowel remains a critical problem resulting in up to 80% mortality. The loss of gut barrier function plays an important role. Our previous studies have shown that administration of adrenomedullin (AM), a novel vasoactive peptide, and its binding protein (AMBP-1), reduces the systemic inflammatory response and organ injury after systemic ischemia induced by hemorrhagic shock. However, it remains unknown whether administration of AM/AMBP-1 preserves gut barrier function after gut ischemia reperfusion (I/R). We therefore hypothesized that AM/AMBP-1 prevents structural and functional damages to the intestinal mucosa after gut I/R. To test this, gut ischemia was induced by placing a microvascular clip across the superior mesenteric artery (SMA) for 90 min in male adult rats. After release of the SMA clamp, AM (12 mug/kg BW) and AMBP-1 (40 mug/kg BW) in combination or vehicle (1-ml normal saline) were administered intravenously over a period of 30 min. The mucosal barrier function in the small intestine was assessed in an isolated everted ileum sac using fluorescein-isothiocyanate dextran (FD4) at 4 h after AM/AMBP-1 treatment. FD4 clearance was used as a measure of gut permeability. In additional groups of animals, blood and small intestine samples were collected at 4 h after the treatment. Morphological changes in the small intestine were assessed by H-E staining. Serum concentrations of alanine aminotransferase, aspartate aminotransferase, total bilirubin, direct bilirubin, lactate and lactate dehydrogenase were also assessed. The gene expression and protein levels of TNF-alpha in the small intestine were determined by RT-PCR and ELISA, respectively. Our results showed that administration of AM/AMBP-1 significantly attenuated the development of intestinal mucosal hyperpermeability during the reperfusion. Treatment with AM/AMBP-1 dramatically improved I/R-induced intestinal mucosal damages, attenuated remote organ injury, and downregulated gene expression and protein levels of TNF-alpha in the small intestine. In conclusion, AM/AMBP-1 attenuates structural and functional damages to the intestinal mucosa, and it appears to be a novel treatment for reperfusion injury after gut ischemia. The beneficial effect of AM/AMBP-1 on gut barrier function after I/R is associated with downregulation of TNF-alpha. |
---|---|
ISSN: | 1936-2625 |