Loading…

Probing Nitrogen-Sensitive Steps in the Free-Radical-Mediated Deamination of Amino Alcohols by Ethanolamine Ammonia-Lyase

The contribution of C−N bond-breaking/making steps to the rate of the free-radical-mediated deamination of vicinal amino alcohols by adenosylcobalamin-dependent ethanolamine ammonia-lyase has been investigated by 15N isotope effects (IE's) and by electron paramagnetic resonance (EPR) spectrosco...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2006-06, Vol.128 (22), p.7120-7121
Main Authors: Poyner, Russell R, Anderson, Mark A, Bandarian, Vahe, Cleland, W. Wallace, Reed, George H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The contribution of C−N bond-breaking/making steps to the rate of the free-radical-mediated deamination of vicinal amino alcohols by adenosylcobalamin-dependent ethanolamine ammonia-lyase has been investigated by 15N isotope effects (IE's) and by electron paramagnetic resonance (EPR) spectroscopy. 15N IE's were determined for three substrates, ethanolamine, (R)-2-aminopropanol, and (S)-2-aminopropanol, using isotope ratio mass spectrometry analysis of the product ammonia. Measurements with all three substrates gave measurable, normal 15N IE's; however, the IE of (S)-2-aminopropanol was ∼5-fold greater than that of the other two. Reaction mixtures frozen during the steady state show that the 2-aminopropanols give EPR spectra characteristic of the initial substrate radical, whereas ethanolamine gives spectra consistent with a product-related radical (Warncke, K.; Schmidt, J. C.; Kee, S.-C. J. Am. Chem. Soc. 1999, 121, 10522−10528). The steady-state concentration of the radical with (R)-2-aminopropanol is about half that observed with the S isomer, and with (R)-2-aminopropanol, the steady-state level of the radical is further reduced upon deuteration at C1. The results show that relative heights of kinetic barriers differ among the three substrates such that levels or identities of steady-state intermediates differ. 15N-sensitive steps are significant contributors to V/K with (S)-2-aminopropanol.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja060710q