Loading…
Quantitative evaluation of oligonucleotide surface concentrations using polymerization-based amplification
Quantitative evaluation of minimal polynucleotide concentrations has become a critical analysis among a myriad of applications found in molecular diagnostic technology. Development of high-throughput, nonenzymatic assays that are sensitive, quantitative and yet feasible for point-of-care testing are...
Saved in:
Published in: | Analytical and bioanalytical chemistry 2008-09, Vol.392 (1-2), p.167-175 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantitative evaluation of minimal polynucleotide concentrations has become a critical analysis among a myriad of applications found in molecular diagnostic technology. Development of high-throughput, nonenzymatic assays that are sensitive, quantitative and yet feasible for point-of-care testing are thus beneficial for routine implementation. Here, we develop a nonenzymatic method for quantifying surface concentrations of labeled DNA targets by coupling regulated amounts of polymer growth to complementary biomolecular binding on array-based biochips. Polymer film thickness measurements in the 20-220 nm range vary logarithmically with labeled DNA surface concentrations over two orders of magnitude with a lower limit of quantitation at 60 molecules/μm² (~10⁶ target molecules). In an effort to develop this amplification method towards compatibility with fluorescence-based methods of characterization, incorporation of fluorescent nanoparticles into the polymer films is also evaluated. The resulting gains in fluorescent signal enable quantification using detection instrumentation amenable to point-of-care settings. [graphic removed] |
---|---|
ISSN: | 1618-2642 0937-0633 1618-2650 1432-1130 |
DOI: | 10.1007/s00216-008-2259-6 |