Loading…

Regular Gaits and Optimal Velocities for Motor Proteins

It has been observed in numerical experiments that adding a cargo to a motor protein can regularize its gait. Here we explain these results via asymptotic analysis on a general stochastic motor protein model. This analysis permits a computation of various observables (e.g., the mean velocity) of the...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2008-09, Vol.95 (6), p.2681-2691
Main Authors: DeVille, R. E. Lee, Vanden-Eijnden, Eric
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It has been observed in numerical experiments that adding a cargo to a motor protein can regularize its gait. Here we explain these results via asymptotic analysis on a general stochastic motor protein model. This analysis permits a computation of various observables (e.g., the mean velocity) of the motor protein and shows that the presence of the cargo also makes the velocity of the motor nonmonotone in certain control parameters (e.g., ATP concentration). As an example, we consider the case of a single myosin-V protein transporting a cargo and show that, at realistic concentrations of ATP, myosin-V operates in the regime which maximizes motor velocity. Our analysis also suggests an experimental regimen which can test the efficacy of any specific motor protein model to a greater degree than was heretofore possible.
ISSN:0006-3495
1542-0086
DOI:10.1529/biophysj.108.130674