Loading…
Adding Explicit Solvent Molecules to Continuum Solvent Calculations for the Calculation of Aqueous Acid Dissociation Constants
Aqueous acid dissociation free energies for a diverse set of 57 monoprotic acids have been calculated using a combination of experimental and calculated gas and liquid-phase free energies. For ionic species, aqueous solvation free energies were calculated using the recently developed SM6 continuum s...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2006-02, Vol.110 (7), p.2493-2499 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a507t-fe390ccfba6d41c1bf0df68ce7bd11c08b4a2edd87391d952335383c7c694aad3 |
---|---|
cites | cdi_FETCH-LOGICAL-a507t-fe390ccfba6d41c1bf0df68ce7bd11c08b4a2edd87391d952335383c7c694aad3 |
container_end_page | 2499 |
container_issue | 7 |
container_start_page | 2493 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 110 |
creator | Kelly, Casey P Cramer, Christopher J Truhlar, Donald G |
description | Aqueous acid dissociation free energies for a diverse set of 57 monoprotic acids have been calculated using a combination of experimental and calculated gas and liquid-phase free energies. For ionic species, aqueous solvation free energies were calculated using the recently developed SM6 continuum solvation model (Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput. 2005, 1, 1133). This model combines a dielectric continuum with atomic surface tensions to account for bulk solvent effects. For some of the acids studied, a combined approach that involves attaching a single explicit water molecule to the conjugate base (anion), and then surrounding the resulting anion−water cluster by a dielectric continuum, significantly improves the agreement between the calculated pK a value and experiment. This suggests that for some anions, particularly those concentrating charge on a single exposed heteroatom, augmenting implicit solvent calculations with a single explicit water molecule is required, and adequate, to account for strong short-range hydrogen bonding interactions between the anion and the solvent. We also demonstrate the effect of adding several explicit waters by calculating the pK a of bicarbonate (HCO3 -) using as the conjugate base carbonate (CO3 2-) bound by up to three explicit water molecules. |
doi_str_mv | 10.1021/jp055336f |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2528253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67663470</sourcerecordid><originalsourceid>FETCH-LOGICAL-a507t-fe390ccfba6d41c1bf0df68ce7bd11c08b4a2edd87391d952335383c7c694aad3</originalsourceid><addsrcrecordid>eNptkUtv1DAUhS0EomVgwR9A3oDEItSP2Ek2SKO0tEjDQ20RS8vxo_WQsae2U5UNv72uMhqKxMqWz6dzfO4F4DVGHzAi-Gi9RYxRyu0TcIgZQRUjmD0td9R2FeO0OwAvUlojhDAl9XNwgHndIoq6Q_BnqbXzV_Dkbjs65TK8COOt8Rl-CaNR02gSzAH2wWfnp2mzl3s5FlVmF3yCNkSYr83jRxgsXN5MJkwJLpXT8NilFJSbxeKXsvQ5vQTPrByTebU7F-DHp5PL_qxafTv93C9XlWSoyZU1tENK2UFyXWOFB4u05a0yzaAxVqgdakmM1m1DO6w7RihltKWqUbyrpdR0AT7Ovttp2BitSoUoR7GNbiPjbxGkE_8q3l2Lq3ArCCMtKbNdgHc7gxhKrZTFxiVlxlH6h46CN5zTukEFfD-DKoaUorH7EIzEw7bEfluFffP4V3_J3XoKUM2AS9nc7XUZf5VA2jBx-f1CrH5-Pef9-bFYFf7tzEuVxDpM0Zeh_if4HkATr28</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67663470</pqid></control><display><type>article</type><title>Adding Explicit Solvent Molecules to Continuum Solvent Calculations for the Calculation of Aqueous Acid Dissociation Constants</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Kelly, Casey P ; Cramer, Christopher J ; Truhlar, Donald G</creator><creatorcontrib>Kelly, Casey P ; Cramer, Christopher J ; Truhlar, Donald G</creatorcontrib><description>Aqueous acid dissociation free energies for a diverse set of 57 monoprotic acids have been calculated using a combination of experimental and calculated gas and liquid-phase free energies. For ionic species, aqueous solvation free energies were calculated using the recently developed SM6 continuum solvation model (Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput. 2005, 1, 1133). This model combines a dielectric continuum with atomic surface tensions to account for bulk solvent effects. For some of the acids studied, a combined approach that involves attaching a single explicit water molecule to the conjugate base (anion), and then surrounding the resulting anion−water cluster by a dielectric continuum, significantly improves the agreement between the calculated pK a value and experiment. This suggests that for some anions, particularly those concentrating charge on a single exposed heteroatom, augmenting implicit solvent calculations with a single explicit water molecule is required, and adequate, to account for strong short-range hydrogen bonding interactions between the anion and the solvent. We also demonstrate the effect of adding several explicit waters by calculating the pK a of bicarbonate (HCO3 -) using as the conjugate base carbonate (CO3 2-) bound by up to three explicit water molecules.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp055336f</identifier><identifier>PMID: 16480309</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acids - chemistry ; Algorithms ; Anions ; Bicarbonates - chemistry ; Hydrogen Bonding ; Solvents - chemistry ; Thermodynamics ; Water - chemistry</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2006-02, Vol.110 (7), p.2493-2499</ispartof><rights>Copyright © 2006 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a507t-fe390ccfba6d41c1bf0df68ce7bd11c08b4a2edd87391d952335383c7c694aad3</citedby><cites>FETCH-LOGICAL-a507t-fe390ccfba6d41c1bf0df68ce7bd11c08b4a2edd87391d952335383c7c694aad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16480309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kelly, Casey P</creatorcontrib><creatorcontrib>Cramer, Christopher J</creatorcontrib><creatorcontrib>Truhlar, Donald G</creatorcontrib><title>Adding Explicit Solvent Molecules to Continuum Solvent Calculations for the Calculation of Aqueous Acid Dissociation Constants</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Aqueous acid dissociation free energies for a diverse set of 57 monoprotic acids have been calculated using a combination of experimental and calculated gas and liquid-phase free energies. For ionic species, aqueous solvation free energies were calculated using the recently developed SM6 continuum solvation model (Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput. 2005, 1, 1133). This model combines a dielectric continuum with atomic surface tensions to account for bulk solvent effects. For some of the acids studied, a combined approach that involves attaching a single explicit water molecule to the conjugate base (anion), and then surrounding the resulting anion−water cluster by a dielectric continuum, significantly improves the agreement between the calculated pK a value and experiment. This suggests that for some anions, particularly those concentrating charge on a single exposed heteroatom, augmenting implicit solvent calculations with a single explicit water molecule is required, and adequate, to account for strong short-range hydrogen bonding interactions between the anion and the solvent. We also demonstrate the effect of adding several explicit waters by calculating the pK a of bicarbonate (HCO3 -) using as the conjugate base carbonate (CO3 2-) bound by up to three explicit water molecules.</description><subject>Acids - chemistry</subject><subject>Algorithms</subject><subject>Anions</subject><subject>Bicarbonates - chemistry</subject><subject>Hydrogen Bonding</subject><subject>Solvents - chemistry</subject><subject>Thermodynamics</subject><subject>Water - chemistry</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNptkUtv1DAUhS0EomVgwR9A3oDEItSP2Ek2SKO0tEjDQ20RS8vxo_WQsae2U5UNv72uMhqKxMqWz6dzfO4F4DVGHzAi-Gi9RYxRyu0TcIgZQRUjmD0td9R2FeO0OwAvUlojhDAl9XNwgHndIoq6Q_BnqbXzV_Dkbjs65TK8COOt8Rl-CaNR02gSzAH2wWfnp2mzl3s5FlVmF3yCNkSYr83jRxgsXN5MJkwJLpXT8NilFJSbxeKXsvQ5vQTPrByTebU7F-DHp5PL_qxafTv93C9XlWSoyZU1tENK2UFyXWOFB4u05a0yzaAxVqgdakmM1m1DO6w7RihltKWqUbyrpdR0AT7Ovttp2BitSoUoR7GNbiPjbxGkE_8q3l2Lq3ArCCMtKbNdgHc7gxhKrZTFxiVlxlH6h46CN5zTukEFfD-DKoaUorH7EIzEw7bEfluFffP4V3_J3XoKUM2AS9nc7XUZf5VA2jBx-f1CrH5-Pef9-bFYFf7tzEuVxDpM0Zeh_if4HkATr28</recordid><startdate>20060223</startdate><enddate>20060223</enddate><creator>Kelly, Casey P</creator><creator>Cramer, Christopher J</creator><creator>Truhlar, Donald G</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060223</creationdate><title>Adding Explicit Solvent Molecules to Continuum Solvent Calculations for the Calculation of Aqueous Acid Dissociation Constants</title><author>Kelly, Casey P ; Cramer, Christopher J ; Truhlar, Donald G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a507t-fe390ccfba6d41c1bf0df68ce7bd11c08b4a2edd87391d952335383c7c694aad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acids - chemistry</topic><topic>Algorithms</topic><topic>Anions</topic><topic>Bicarbonates - chemistry</topic><topic>Hydrogen Bonding</topic><topic>Solvents - chemistry</topic><topic>Thermodynamics</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelly, Casey P</creatorcontrib><creatorcontrib>Cramer, Christopher J</creatorcontrib><creatorcontrib>Truhlar, Donald G</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelly, Casey P</au><au>Cramer, Christopher J</au><au>Truhlar, Donald G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adding Explicit Solvent Molecules to Continuum Solvent Calculations for the Calculation of Aqueous Acid Dissociation Constants</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2006-02-23</date><risdate>2006</risdate><volume>110</volume><issue>7</issue><spage>2493</spage><epage>2499</epage><pages>2493-2499</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Aqueous acid dissociation free energies for a diverse set of 57 monoprotic acids have been calculated using a combination of experimental and calculated gas and liquid-phase free energies. For ionic species, aqueous solvation free energies were calculated using the recently developed SM6 continuum solvation model (Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput. 2005, 1, 1133). This model combines a dielectric continuum with atomic surface tensions to account for bulk solvent effects. For some of the acids studied, a combined approach that involves attaching a single explicit water molecule to the conjugate base (anion), and then surrounding the resulting anion−water cluster by a dielectric continuum, significantly improves the agreement between the calculated pK a value and experiment. This suggests that for some anions, particularly those concentrating charge on a single exposed heteroatom, augmenting implicit solvent calculations with a single explicit water molecule is required, and adequate, to account for strong short-range hydrogen bonding interactions between the anion and the solvent. We also demonstrate the effect of adding several explicit waters by calculating the pK a of bicarbonate (HCO3 -) using as the conjugate base carbonate (CO3 2-) bound by up to three explicit water molecules.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>16480309</pmid><doi>10.1021/jp055336f</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2006-02, Vol.110 (7), p.2493-2499 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2528253 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Acids - chemistry Algorithms Anions Bicarbonates - chemistry Hydrogen Bonding Solvents - chemistry Thermodynamics Water - chemistry |
title | Adding Explicit Solvent Molecules to Continuum Solvent Calculations for the Calculation of Aqueous Acid Dissociation Constants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adding%20Explicit%20Solvent%20Molecules%20to%20Continuum%20Solvent%20Calculations%20for%20the%20Calculation%20of%20Aqueous%20Acid%20Dissociation%20Constants&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Kelly,%20Casey%20P&rft.date=2006-02-23&rft.volume=110&rft.issue=7&rft.spage=2493&rft.epage=2499&rft.pages=2493-2499&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp055336f&rft_dat=%3Cproquest_pubme%3E67663470%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a507t-fe390ccfba6d41c1bf0df68ce7bd11c08b4a2edd87391d952335383c7c694aad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67663470&rft_id=info:pmid/16480309&rfr_iscdi=true |