Loading…

5‘-O-[(N-Acyl)sulfamoyl]adenosines as Antitubercular Agents that Inhibit MbtA:  An Adenylation Enzyme Required for Siderophore Biosynthesis of the Mycobactins

A study of the structure−activity relationships of 5‘-O-[N-(salicyl)sulfamoyl]adenosine (6), a potent inhibitor of the bifunctional enzyme salicyl-AMP ligase (MbtA, encoded by the gene Rv2384) in Mycobacterium tuberculosis, is described, targeting the salicyl moiety. A systematic series of analogues...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medicinal chemistry 2007-11, Vol.50 (24), p.6080-6094
Main Authors: Qiao, Chunhua, Gupte, Amol, Boshoff, Helena I, Wilson, Daniel J, Bennett, Eric M, Somu, Ravindranadh V, Barry, Clifton E, Aldrich, Courtney C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A study of the structure−activity relationships of 5‘-O-[N-(salicyl)sulfamoyl]adenosine (6), a potent inhibitor of the bifunctional enzyme salicyl-AMP ligase (MbtA, encoded by the gene Rv2384) in Mycobacterium tuberculosis, is described, targeting the salicyl moiety. A systematic series of analogues was prepared exploring the importance of substitution at the C-2 position revealing that a hydroxy group is required for optimal activity. Examination of a series of substituted salicyl derivatives indicated that substitution at C-4 was tolerated. Consequently, a series of analogues at this position provided 4-fluoro derivative, which displayed an impressive MIC99 of 0.098 μM against whole-cell M. tuberculosis under iron-limiting conditions. Examination of other heterocyclic, cycloalkyl, alkyl, and aminoacyl replacements of the salicyl moiety demonstrated that these nonconserative modifications were poorly tolerated, a result consistent with the fairly strict substrate specificities of related non-ribosomal peptide synthetase adenylation enzymes.
ISSN:0022-2623
1520-4804
DOI:10.1021/jm070905o