Loading…

Characterizing Complex Dynamics in the Transactivation Response Element Apical Loop and Motional Correlations with the Bulge by NMR, Molecular Dynamics, and Mutagenesis

The HIV-1 transactivation response element (TAR) RNA binds a variety of proteins and is a target for developing anti-HIV therapies. TAR has two primary binding sites: a UCU bulge and a CUGGGA apical loop. We used NMR residual dipolar couplings, carbon spin relaxation (R1 and R2), and relaxation disp...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2008-10, Vol.95 (8), p.3906-3915
Main Authors: Dethoff, Elizabeth A., Hansen, Alexandar L., Musselman, Catherine, Watt, Eric D., Andricioaei, Ioan, Al-Hashimi, Hashim M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c516t-4f239ffe579f724778312ea33824f7c429cd1e6b0c717793dc9c3bdae1241f533
cites cdi_FETCH-LOGICAL-c516t-4f239ffe579f724778312ea33824f7c429cd1e6b0c717793dc9c3bdae1241f533
container_end_page 3915
container_issue 8
container_start_page 3906
container_title Biophysical journal
container_volume 95
creator Dethoff, Elizabeth A.
Hansen, Alexandar L.
Musselman, Catherine
Watt, Eric D.
Andricioaei, Ioan
Al-Hashimi, Hashim M.
description The HIV-1 transactivation response element (TAR) RNA binds a variety of proteins and is a target for developing anti-HIV therapies. TAR has two primary binding sites: a UCU bulge and a CUGGGA apical loop. We used NMR residual dipolar couplings, carbon spin relaxation (R1 and R2), and relaxation dispersion (R1ρ) in conjunction with molecular dynamics and mutagenesis to characterize the dynamics of the TAR apical loop and investigate previously proposed long-range interactions with the distant bulge. Replacement of the wild-type apical loop with a UUCG loop did not significantly affect the structural dynamics at the bulge, indicating that the apical loop and the bulge act largely as independent dynamical recognition centers. The apical loop undergoes complex dynamics at multiple timescales that are likely important for adaptive recognition: U31 and G33 undergo limited motions, G32 is highly flexible at picosecond-nanosecond timescales, and G34 and C30 form a dynamic Watson-Crick basepair in which G34 and A35 undergo a slow (∼30μs) likely concerted looping in and out motion, with A35 also undergoing large amplitude motions at picosecond-nanosecond timescales. Our study highlights the power of combining NMR, molecular dynamics, and mutagenesis in characterizing RNA dynamics.
doi_str_mv 10.1529/biophysj.108.140285
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2553144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349508785291</els_id><sourcerecordid>864416690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-4f239ffe579f724778312ea33824f7c429cd1e6b0c717793dc9c3bdae1241f533</originalsourceid><addsrcrecordid>eNp9kstuEzEUhkcIRNPCEyAhiw2bTvB1LguQSigXKQWpKmvL4zmTOPLYU3smNDwRj4nbhHJZsLJ0_P3_8Tn-s-wZwXMiaP2qMX5Y7-JmTnA1JxzTSjzIZkRwmmNcFQ-zGca4yBmvxVF2HOMGY0IFJo-zI1IVlFREzLIfi7UKSo8QzHfjVmjh-8HCDXq3c6o3OiLj0LgGdBWUi4kzWzUa79AlxMG7COjcQg9uRGeD0cqipfcDUq5FF_6WS5WFDwHsnSqib2Zc3_m9newKULNDny8uTxNsQU9Whfu-p3uTaVQrcBBNfJI96pSN8PRwnmRf359fLT7myy8fPi3OlrkWpBhz3lFWdx2Isu5KysuyYoSCYqyivCs1p7VuCRQN1iUpy5q1utasaRUQykknGDvJ3ux9h6npodVptqCsHILpVdhJr4z8-8aZtVz5raRCMMJ5Mnh5MAj-eoI4yt5EDdYqB36Ksio4J0VR40S--Ifc-CmknUVJiShqVhGaILaHdPAxBujun0KwvM2B_JWDVKjkPgdJ9fzPKX5rDh-fgNd7ANIutwaCjNqA09CaAHqUrTf_bfATzIrJUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215693812</pqid></control><display><type>article</type><title>Characterizing Complex Dynamics in the Transactivation Response Element Apical Loop and Motional Correlations with the Bulge by NMR, Molecular Dynamics, and Mutagenesis</title><source>NCBI_PubMed Central(免费)</source><creator>Dethoff, Elizabeth A. ; Hansen, Alexandar L. ; Musselman, Catherine ; Watt, Eric D. ; Andricioaei, Ioan ; Al-Hashimi, Hashim M.</creator><creatorcontrib>Dethoff, Elizabeth A. ; Hansen, Alexandar L. ; Musselman, Catherine ; Watt, Eric D. ; Andricioaei, Ioan ; Al-Hashimi, Hashim M.</creatorcontrib><description>The HIV-1 transactivation response element (TAR) RNA binds a variety of proteins and is a target for developing anti-HIV therapies. TAR has two primary binding sites: a UCU bulge and a CUGGGA apical loop. We used NMR residual dipolar couplings, carbon spin relaxation (R1 and R2), and relaxation dispersion (R1ρ) in conjunction with molecular dynamics and mutagenesis to characterize the dynamics of the TAR apical loop and investigate previously proposed long-range interactions with the distant bulge. Replacement of the wild-type apical loop with a UUCG loop did not significantly affect the structural dynamics at the bulge, indicating that the apical loop and the bulge act largely as independent dynamical recognition centers. The apical loop undergoes complex dynamics at multiple timescales that are likely important for adaptive recognition: U31 and G33 undergo limited motions, G32 is highly flexible at picosecond-nanosecond timescales, and G34 and C30 form a dynamic Watson-Crick basepair in which G34 and A35 undergo a slow (∼30μs) likely concerted looping in and out motion, with A35 also undergoing large amplitude motions at picosecond-nanosecond timescales. Our study highlights the power of combining NMR, molecular dynamics, and mutagenesis in characterizing RNA dynamics.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.108.140285</identifier><identifier>PMID: 18621815</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Base Sequence ; Binding sites ; Biophysics ; Carbon Isotopes ; Coupling (molecular) ; Dispersions ; Dynamic tests ; Dynamics ; HIV-1 - chemistry ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular biology ; Molecular dynamics ; Molecular Sequence Data ; Mutagenesis ; Mutation - genetics ; Nitrogen Isotopes ; Nuclear magnetic resonance ; Nucleic Acid Conformation ; Nucleic Acids ; Recognition ; Response Elements - genetics ; Ribonucleic acid ; Ribonucleic acids ; RNA ; RNA, Viral - chemistry ; RNA, Viral - genetics ; Transcriptional Activation - genetics</subject><ispartof>Biophysical journal, 2008-10, Vol.95 (8), p.3906-3915</ispartof><rights>2008 The Biophysical Society</rights><rights>Copyright Biophysical Society Oct 15, 2008</rights><rights>Copyright © 2008, Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-4f239ffe579f724778312ea33824f7c429cd1e6b0c717793dc9c3bdae1241f533</citedby><cites>FETCH-LOGICAL-c516t-4f239ffe579f724778312ea33824f7c429cd1e6b0c717793dc9c3bdae1241f533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2553144/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2553144/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18621815$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dethoff, Elizabeth A.</creatorcontrib><creatorcontrib>Hansen, Alexandar L.</creatorcontrib><creatorcontrib>Musselman, Catherine</creatorcontrib><creatorcontrib>Watt, Eric D.</creatorcontrib><creatorcontrib>Andricioaei, Ioan</creatorcontrib><creatorcontrib>Al-Hashimi, Hashim M.</creatorcontrib><title>Characterizing Complex Dynamics in the Transactivation Response Element Apical Loop and Motional Correlations with the Bulge by NMR, Molecular Dynamics, and Mutagenesis</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The HIV-1 transactivation response element (TAR) RNA binds a variety of proteins and is a target for developing anti-HIV therapies. TAR has two primary binding sites: a UCU bulge and a CUGGGA apical loop. We used NMR residual dipolar couplings, carbon spin relaxation (R1 and R2), and relaxation dispersion (R1ρ) in conjunction with molecular dynamics and mutagenesis to characterize the dynamics of the TAR apical loop and investigate previously proposed long-range interactions with the distant bulge. Replacement of the wild-type apical loop with a UUCG loop did not significantly affect the structural dynamics at the bulge, indicating that the apical loop and the bulge act largely as independent dynamical recognition centers. The apical loop undergoes complex dynamics at multiple timescales that are likely important for adaptive recognition: U31 and G33 undergo limited motions, G32 is highly flexible at picosecond-nanosecond timescales, and G34 and C30 form a dynamic Watson-Crick basepair in which G34 and A35 undergo a slow (∼30μs) likely concerted looping in and out motion, with A35 also undergoing large amplitude motions at picosecond-nanosecond timescales. Our study highlights the power of combining NMR, molecular dynamics, and mutagenesis in characterizing RNA dynamics.</description><subject>Base Sequence</subject><subject>Binding sites</subject><subject>Biophysics</subject><subject>Carbon Isotopes</subject><subject>Coupling (molecular)</subject><subject>Dispersions</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>HIV-1 - chemistry</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecular dynamics</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>Mutation - genetics</subject><subject>Nitrogen Isotopes</subject><subject>Nuclear magnetic resonance</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic Acids</subject><subject>Recognition</subject><subject>Response Elements - genetics</subject><subject>Ribonucleic acid</subject><subject>Ribonucleic acids</subject><subject>RNA</subject><subject>RNA, Viral - chemistry</subject><subject>RNA, Viral - genetics</subject><subject>Transcriptional Activation - genetics</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kstuEzEUhkcIRNPCEyAhiw2bTvB1LguQSigXKQWpKmvL4zmTOPLYU3smNDwRj4nbhHJZsLJ0_P3_8Tn-s-wZwXMiaP2qMX5Y7-JmTnA1JxzTSjzIZkRwmmNcFQ-zGca4yBmvxVF2HOMGY0IFJo-zI1IVlFREzLIfi7UKSo8QzHfjVmjh-8HCDXq3c6o3OiLj0LgGdBWUi4kzWzUa79AlxMG7COjcQg9uRGeD0cqipfcDUq5FF_6WS5WFDwHsnSqib2Zc3_m9newKULNDny8uTxNsQU9Whfu-p3uTaVQrcBBNfJI96pSN8PRwnmRf359fLT7myy8fPi3OlrkWpBhz3lFWdx2Isu5KysuyYoSCYqyivCs1p7VuCRQN1iUpy5q1utasaRUQykknGDvJ3ux9h6npodVptqCsHILpVdhJr4z8-8aZtVz5raRCMMJ5Mnh5MAj-eoI4yt5EDdYqB36Ksio4J0VR40S--Ifc-CmknUVJiShqVhGaILaHdPAxBujun0KwvM2B_JWDVKjkPgdJ9fzPKX5rDh-fgNd7ANIutwaCjNqA09CaAHqUrTf_bfATzIrJUg</recordid><startdate>20081015</startdate><enddate>20081015</enddate><creator>Dethoff, Elizabeth A.</creator><creator>Hansen, Alexandar L.</creator><creator>Musselman, Catherine</creator><creator>Watt, Eric D.</creator><creator>Andricioaei, Ioan</creator><creator>Al-Hashimi, Hashim M.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20081015</creationdate><title>Characterizing Complex Dynamics in the Transactivation Response Element Apical Loop and Motional Correlations with the Bulge by NMR, Molecular Dynamics, and Mutagenesis</title><author>Dethoff, Elizabeth A. ; Hansen, Alexandar L. ; Musselman, Catherine ; Watt, Eric D. ; Andricioaei, Ioan ; Al-Hashimi, Hashim M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-4f239ffe579f724778312ea33824f7c429cd1e6b0c717793dc9c3bdae1241f533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Base Sequence</topic><topic>Binding sites</topic><topic>Biophysics</topic><topic>Carbon Isotopes</topic><topic>Coupling (molecular)</topic><topic>Dispersions</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>HIV-1 - chemistry</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecular dynamics</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>Mutation - genetics</topic><topic>Nitrogen Isotopes</topic><topic>Nuclear magnetic resonance</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic Acids</topic><topic>Recognition</topic><topic>Response Elements - genetics</topic><topic>Ribonucleic acid</topic><topic>Ribonucleic acids</topic><topic>RNA</topic><topic>RNA, Viral - chemistry</topic><topic>RNA, Viral - genetics</topic><topic>Transcriptional Activation - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dethoff, Elizabeth A.</creatorcontrib><creatorcontrib>Hansen, Alexandar L.</creatorcontrib><creatorcontrib>Musselman, Catherine</creatorcontrib><creatorcontrib>Watt, Eric D.</creatorcontrib><creatorcontrib>Andricioaei, Ioan</creatorcontrib><creatorcontrib>Al-Hashimi, Hashim M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library (ProQuest Database)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dethoff, Elizabeth A.</au><au>Hansen, Alexandar L.</au><au>Musselman, Catherine</au><au>Watt, Eric D.</au><au>Andricioaei, Ioan</au><au>Al-Hashimi, Hashim M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing Complex Dynamics in the Transactivation Response Element Apical Loop and Motional Correlations with the Bulge by NMR, Molecular Dynamics, and Mutagenesis</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2008-10-15</date><risdate>2008</risdate><volume>95</volume><issue>8</issue><spage>3906</spage><epage>3915</epage><pages>3906-3915</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The HIV-1 transactivation response element (TAR) RNA binds a variety of proteins and is a target for developing anti-HIV therapies. TAR has two primary binding sites: a UCU bulge and a CUGGGA apical loop. We used NMR residual dipolar couplings, carbon spin relaxation (R1 and R2), and relaxation dispersion (R1ρ) in conjunction with molecular dynamics and mutagenesis to characterize the dynamics of the TAR apical loop and investigate previously proposed long-range interactions with the distant bulge. Replacement of the wild-type apical loop with a UUCG loop did not significantly affect the structural dynamics at the bulge, indicating that the apical loop and the bulge act largely as independent dynamical recognition centers. The apical loop undergoes complex dynamics at multiple timescales that are likely important for adaptive recognition: U31 and G33 undergo limited motions, G32 is highly flexible at picosecond-nanosecond timescales, and G34 and C30 form a dynamic Watson-Crick basepair in which G34 and A35 undergo a slow (∼30μs) likely concerted looping in and out motion, with A35 also undergoing large amplitude motions at picosecond-nanosecond timescales. Our study highlights the power of combining NMR, molecular dynamics, and mutagenesis in characterizing RNA dynamics.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18621815</pmid><doi>10.1529/biophysj.108.140285</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2008-10, Vol.95 (8), p.3906-3915
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2553144
source NCBI_PubMed Central(免费)
subjects Base Sequence
Binding sites
Biophysics
Carbon Isotopes
Coupling (molecular)
Dispersions
Dynamic tests
Dynamics
HIV-1 - chemistry
Magnetic Resonance Spectroscopy
Models, Molecular
Molecular biology
Molecular dynamics
Molecular Sequence Data
Mutagenesis
Mutation - genetics
Nitrogen Isotopes
Nuclear magnetic resonance
Nucleic Acid Conformation
Nucleic Acids
Recognition
Response Elements - genetics
Ribonucleic acid
Ribonucleic acids
RNA
RNA, Viral - chemistry
RNA, Viral - genetics
Transcriptional Activation - genetics
title Characterizing Complex Dynamics in the Transactivation Response Element Apical Loop and Motional Correlations with the Bulge by NMR, Molecular Dynamics, and Mutagenesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20Complex%20Dynamics%20in%20the%20Transactivation%20Response%20Element%20Apical%20Loop%20and%20Motional%20Correlations%20with%20the%20Bulge%20by%20NMR,%20Molecular%20Dynamics,%20and%20Mutagenesis&rft.jtitle=Biophysical%20journal&rft.au=Dethoff,%20Elizabeth%20A.&rft.date=2008-10-15&rft.volume=95&rft.issue=8&rft.spage=3906&rft.epage=3915&rft.pages=3906-3915&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.108.140285&rft_dat=%3Cproquest_pubme%3E864416690%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c516t-4f239ffe579f724778312ea33824f7c429cd1e6b0c717793dc9c3bdae1241f533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215693812&rft_id=info:pmid/18621815&rfr_iscdi=true