Loading…

Brand differences of free-base nicotine delivery in cigarette smoke: the view of the tobacco industry documents

The recent availability of internal tobacco industry documents provides significant insight into industry knowledge and manipulation of tobacco smoke delivery. One critical area of research is the role of smoke chemistry in determining the absorption and effects of smoke constituents, especially har...

Full description

Saved in:
Bibliographic Details
Published in:Tobacco control 2006-06, Vol.15 (3), p.189-198
Main Authors: Ferris Wayne, G, Connolly, G N, Henningfield, J E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The recent availability of internal tobacco industry documents provides significant insight into industry knowledge and manipulation of tobacco smoke delivery. One critical area of research is the role of smoke chemistry in determining the absorption and effects of smoke constituents, especially harm producing or pharmacologically active compounds. Independent scientific research has suggested that the nicotine dosing characteristics, hence the addiction potential of cigarettes, may be determined in part by the amount of free-base nicotine in cigarette smoke and its effects on the location, route, and speed of absorption in the body and on the sensory perception effects of the inhaled smoke. Tobacco industry documents describe the use of a number of methods internally for measuring free-base nicotine delivery. These include the common use of cigarette “smoke pH” as a means to estimate the fraction of free-base nicotine in the particulate matter (PM) in cigarette smoke, as well as efforts to measure free-base nicotine directly. Although these methods do not provide accurate absolute measures of free-base nicotine in smoke, consistencies observed in the findings across the various manufacturers indicate: (1) real relative differences in the acid/base chemistry of the smoke from different brands of cigarettes; (2) a connection between differences in free-base levels and brand-dependent differences in sensory perception and smoke “impact”; and (3) levels of free-base nicotine that are greater than have typically been publicly discussed by the industry. Furthermore, the results of these methods are generally consistent with those of a recent study from the Centers for Disease Control and Prevention which directly measured the free-base fraction of nicotine across a range of cigarette types. Consideration of the likely fundamental importance of free-base nicotine levels in cigarette smoke, together with the efforts discussed in the tobacco industry documents to measure such levels, indicates that the public health community would benefit from additional research to assess directly the delivery of free-base nicotine in cigarette smoke across brands. This may be especially useful for those products (“light”, “ultralight”, “reduced carcinogen”, etc) that have been promoted, either explicitly or implicitly, as “harm reducing”.
ISSN:0964-4563
1468-3318
1468-3318
DOI:10.1136/tc.2005.013805