Loading…

Examining the ribonuclease H primer grip of HIV-1 reverse transcriptase by charge neutralization of RNA/DNA hybrids

The crystal structure of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) bound to an RNA/DNA hybrid reveals an extensive network of contacts with the phosphate backbone of the DNA strand ~4-9 bp downstream from the ribonuclease H (RNase H) catalytic center. Collectively design...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2008-11, Vol.36 (20), p.6363-6371
Main Authors: Dash, Chandravanu, Scarth, Brian J, Badorrek, Christopher, Götte, Matthias, Le Grice, Stuart F.J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c557t-d86eec170afc3d32ea47eb3d694d976b076d24b3ee14fb96ca9d2233b526be653
cites cdi_FETCH-LOGICAL-c557t-d86eec170afc3d32ea47eb3d694d976b076d24b3ee14fb96ca9d2233b526be653
container_end_page 6371
container_issue 20
container_start_page 6363
container_title Nucleic acids research
container_volume 36
creator Dash, Chandravanu
Scarth, Brian J
Badorrek, Christopher
Götte, Matthias
Le Grice, Stuart F.J
description The crystal structure of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) bound to an RNA/DNA hybrid reveals an extensive network of contacts with the phosphate backbone of the DNA strand ~4-9 bp downstream from the ribonuclease H (RNase H) catalytic center. Collectively designated as 'the RNase H primer grip', this motif contains a phosphate binding pocket analogous to the human and Bacillus halodurans RNases H. The notion that the RNase H primer grip mediates the trajectory of RNA/DNA hybrids accessing the RNase H active site suggests that locally neutralizing the phosphate backbone may be exploited to manipulate nucleic acid flexibility. To examine this, we introduced single and tandem methylphosphonate substitutions through the region of the DNA primer contacted by the RNase H primer grip and into the RNase H catalytic center. The ability of mutant hybrids to support RNase H and DNA polymerase activity was thereafter examined. In addition, site-specific chemical footprinting was used to evaluate movement of the DNA polymerase and RNase H domains. We show here that minor alteration to the RNase H primer can have a dramatic effect on enzyme positioning, and discuss these findings in light of recent crystallography of human RNase H containing an RNA/DNA hybrid.
doi_str_mv 10.1093/nar/gkn678
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2582618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkn678</oup_id><sourcerecordid>19924870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-d86eec170afc3d32ea47eb3d694d976b076d24b3ee14fb96ca9d2233b526be653</originalsourceid><addsrcrecordid>eNqN0k1v1DAQBuAIgehSuPADwEKCA1JYf8R2fKm0KoVUlCK1FFVcLCeZ7LrdtRc7qbr8erzKqnwcgJMP83jkGb9Z9pTgNwQrNnUmTOfXTsjyXjYhTNC8UILezyaYYZ4TXJR72aMYrzAmBeHFw2yPlCUTRLFJFo9uzco66-aoXwAKtvZuaJZgIqAKrYNdQUDzYNfId6g6_pITFOAGQir3wbjYpFK_xfUGNQsT5oAcDKm0tN9Nb73b3js7nU3fns7QYlMH28bH2YPOLCM82Z372cW7o8-HVX7y6f3x4ewkbziXfd6WAqAhEpuuYS2jYAoJNWuFKlolRY2laGlRMwBSdLUSjVEtpYzVnIoaBGf72cHYdz3UK2gbcNt36e1QJmy0N1b_XnF2oef-RlNeUkHK1ODVrkHw3waIvV7Z2MByaRz4IWqhZCmlEP-ERClalBL_D8SKM5Xgiz_glR-CS-vSFGOJZfrJhF6PqAk-xgDd3WwE6200dIqGHqOR8LNft_GT7rKQwMsR-GH990b56Gzs4fZOmnCthWSS6-ryq5Yf1MezS3yuq-Sfj74zXpuUpagvzikmDBPOFSOY_QCdPNuk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200707415</pqid></control><display><type>article</type><title>Examining the ribonuclease H primer grip of HIV-1 reverse transcriptase by charge neutralization of RNA/DNA hybrids</title><source>PubMed Central</source><source>Oxford Open Access Journals</source><creator>Dash, Chandravanu ; Scarth, Brian J ; Badorrek, Christopher ; Götte, Matthias ; Le Grice, Stuart F.J</creator><creatorcontrib>Dash, Chandravanu ; Scarth, Brian J ; Badorrek, Christopher ; Götte, Matthias ; Le Grice, Stuart F.J</creatorcontrib><description>The crystal structure of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) bound to an RNA/DNA hybrid reveals an extensive network of contacts with the phosphate backbone of the DNA strand ~4-9 bp downstream from the ribonuclease H (RNase H) catalytic center. Collectively designated as 'the RNase H primer grip', this motif contains a phosphate binding pocket analogous to the human and Bacillus halodurans RNases H. The notion that the RNase H primer grip mediates the trajectory of RNA/DNA hybrids accessing the RNase H active site suggests that locally neutralizing the phosphate backbone may be exploited to manipulate nucleic acid flexibility. To examine this, we introduced single and tandem methylphosphonate substitutions through the region of the DNA primer contacted by the RNase H primer grip and into the RNase H catalytic center. The ability of mutant hybrids to support RNase H and DNA polymerase activity was thereafter examined. In addition, site-specific chemical footprinting was used to evaluate movement of the DNA polymerase and RNase H domains. We show here that minor alteration to the RNase H primer can have a dramatic effect on enzyme positioning, and discuss these findings in light of recent crystallography of human RNase H containing an RNA/DNA hybrid.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkn678</identifier><identifier>PMID: 18836193</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bacillus halodurans ; DNA - biosynthesis ; DNA - chemistry ; DNA - metabolism ; DNA Footprinting ; DNA Primers - chemistry ; HIV Reverse Transcriptase - chemistry ; Human immunodeficiency virus 1 ; Models, Molecular ; Nucleic Acid Enzymes ; Organophosphorus Compounds - chemistry ; Ribonuclease H - chemistry ; Ribonuclease H - metabolism ; RNA - chemistry ; RNA - metabolism</subject><ispartof>Nucleic acids research, 2008-11, Vol.36 (20), p.6363-6371</ispartof><rights>2008 The Author(s) 2008</rights><rights>2008 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-d86eec170afc3d32ea47eb3d694d976b076d24b3ee14fb96ca9d2233b526be653</citedby><cites>FETCH-LOGICAL-c557t-d86eec170afc3d32ea47eb3d694d976b076d24b3ee14fb96ca9d2233b526be653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2582618/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2582618/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,1599,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18836193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dash, Chandravanu</creatorcontrib><creatorcontrib>Scarth, Brian J</creatorcontrib><creatorcontrib>Badorrek, Christopher</creatorcontrib><creatorcontrib>Götte, Matthias</creatorcontrib><creatorcontrib>Le Grice, Stuart F.J</creatorcontrib><title>Examining the ribonuclease H primer grip of HIV-1 reverse transcriptase by charge neutralization of RNA/DNA hybrids</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>The crystal structure of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) bound to an RNA/DNA hybrid reveals an extensive network of contacts with the phosphate backbone of the DNA strand ~4-9 bp downstream from the ribonuclease H (RNase H) catalytic center. Collectively designated as 'the RNase H primer grip', this motif contains a phosphate binding pocket analogous to the human and Bacillus halodurans RNases H. The notion that the RNase H primer grip mediates the trajectory of RNA/DNA hybrids accessing the RNase H active site suggests that locally neutralizing the phosphate backbone may be exploited to manipulate nucleic acid flexibility. To examine this, we introduced single and tandem methylphosphonate substitutions through the region of the DNA primer contacted by the RNase H primer grip and into the RNase H catalytic center. The ability of mutant hybrids to support RNase H and DNA polymerase activity was thereafter examined. In addition, site-specific chemical footprinting was used to evaluate movement of the DNA polymerase and RNase H domains. We show here that minor alteration to the RNase H primer can have a dramatic effect on enzyme positioning, and discuss these findings in light of recent crystallography of human RNase H containing an RNA/DNA hybrid.</description><subject>Bacillus halodurans</subject><subject>DNA - biosynthesis</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA Footprinting</subject><subject>DNA Primers - chemistry</subject><subject>HIV Reverse Transcriptase - chemistry</subject><subject>Human immunodeficiency virus 1</subject><subject>Models, Molecular</subject><subject>Nucleic Acid Enzymes</subject><subject>Organophosphorus Compounds - chemistry</subject><subject>Ribonuclease H - chemistry</subject><subject>Ribonuclease H - metabolism</subject><subject>RNA - chemistry</subject><subject>RNA - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqN0k1v1DAQBuAIgehSuPADwEKCA1JYf8R2fKm0KoVUlCK1FFVcLCeZ7LrdtRc7qbr8erzKqnwcgJMP83jkGb9Z9pTgNwQrNnUmTOfXTsjyXjYhTNC8UILezyaYYZ4TXJR72aMYrzAmBeHFw2yPlCUTRLFJFo9uzco66-aoXwAKtvZuaJZgIqAKrYNdQUDzYNfId6g6_pITFOAGQir3wbjYpFK_xfUGNQsT5oAcDKm0tN9Nb73b3js7nU3fns7QYlMH28bH2YPOLCM82Z372cW7o8-HVX7y6f3x4ewkbziXfd6WAqAhEpuuYS2jYAoJNWuFKlolRY2laGlRMwBSdLUSjVEtpYzVnIoaBGf72cHYdz3UK2gbcNt36e1QJmy0N1b_XnF2oef-RlNeUkHK1ODVrkHw3waIvV7Z2MByaRz4IWqhZCmlEP-ERClalBL_D8SKM5Xgiz_glR-CS-vSFGOJZfrJhF6PqAk-xgDd3WwE6200dIqGHqOR8LNft_GT7rKQwMsR-GH990b56Gzs4fZOmnCthWSS6-ryq5Yf1MezS3yuq-Sfj74zXpuUpagvzikmDBPOFSOY_QCdPNuk</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Dash, Chandravanu</creator><creator>Scarth, Brian J</creator><creator>Badorrek, Christopher</creator><creator>Götte, Matthias</creator><creator>Le Grice, Stuart F.J</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>BSCLL</scope><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081101</creationdate><title>Examining the ribonuclease H primer grip of HIV-1 reverse transcriptase by charge neutralization of RNA/DNA hybrids</title><author>Dash, Chandravanu ; Scarth, Brian J ; Badorrek, Christopher ; Götte, Matthias ; Le Grice, Stuart F.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-d86eec170afc3d32ea47eb3d694d976b076d24b3ee14fb96ca9d2233b526be653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bacillus halodurans</topic><topic>DNA - biosynthesis</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA Footprinting</topic><topic>DNA Primers - chemistry</topic><topic>HIV Reverse Transcriptase - chemistry</topic><topic>Human immunodeficiency virus 1</topic><topic>Models, Molecular</topic><topic>Nucleic Acid Enzymes</topic><topic>Organophosphorus Compounds - chemistry</topic><topic>Ribonuclease H - chemistry</topic><topic>Ribonuclease H - metabolism</topic><topic>RNA - chemistry</topic><topic>RNA - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dash, Chandravanu</creatorcontrib><creatorcontrib>Scarth, Brian J</creatorcontrib><creatorcontrib>Badorrek, Christopher</creatorcontrib><creatorcontrib>Götte, Matthias</creatorcontrib><creatorcontrib>Le Grice, Stuart F.J</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Oxford Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dash, Chandravanu</au><au>Scarth, Brian J</au><au>Badorrek, Christopher</au><au>Götte, Matthias</au><au>Le Grice, Stuart F.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Examining the ribonuclease H primer grip of HIV-1 reverse transcriptase by charge neutralization of RNA/DNA hybrids</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2008-11-01</date><risdate>2008</risdate><volume>36</volume><issue>20</issue><spage>6363</spage><epage>6371</epage><pages>6363-6371</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>The crystal structure of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) bound to an RNA/DNA hybrid reveals an extensive network of contacts with the phosphate backbone of the DNA strand ~4-9 bp downstream from the ribonuclease H (RNase H) catalytic center. Collectively designated as 'the RNase H primer grip', this motif contains a phosphate binding pocket analogous to the human and Bacillus halodurans RNases H. The notion that the RNase H primer grip mediates the trajectory of RNA/DNA hybrids accessing the RNase H active site suggests that locally neutralizing the phosphate backbone may be exploited to manipulate nucleic acid flexibility. To examine this, we introduced single and tandem methylphosphonate substitutions through the region of the DNA primer contacted by the RNase H primer grip and into the RNase H catalytic center. The ability of mutant hybrids to support RNase H and DNA polymerase activity was thereafter examined. In addition, site-specific chemical footprinting was used to evaluate movement of the DNA polymerase and RNase H domains. We show here that minor alteration to the RNase H primer can have a dramatic effect on enzyme positioning, and discuss these findings in light of recent crystallography of human RNase H containing an RNA/DNA hybrid.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>18836193</pmid><doi>10.1093/nar/gkn678</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2008-11, Vol.36 (20), p.6363-6371
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2582618
source PubMed Central; Oxford Open Access Journals
subjects Bacillus halodurans
DNA - biosynthesis
DNA - chemistry
DNA - metabolism
DNA Footprinting
DNA Primers - chemistry
HIV Reverse Transcriptase - chemistry
Human immunodeficiency virus 1
Models, Molecular
Nucleic Acid Enzymes
Organophosphorus Compounds - chemistry
Ribonuclease H - chemistry
Ribonuclease H - metabolism
RNA - chemistry
RNA - metabolism
title Examining the ribonuclease H primer grip of HIV-1 reverse transcriptase by charge neutralization of RNA/DNA hybrids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A25%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Examining%20the%20ribonuclease%20H%20primer%20grip%20of%20HIV-1%20reverse%20transcriptase%20by%20charge%20neutralization%20of%20RNA/DNA%20hybrids&rft.jtitle=Nucleic%20acids%20research&rft.au=Dash,%20Chandravanu&rft.date=2008-11-01&rft.volume=36&rft.issue=20&rft.spage=6363&rft.epage=6371&rft.pages=6363-6371&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkn678&rft_dat=%3Cproquest_pubme%3E19924870%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c557t-d86eec170afc3d32ea47eb3d694d976b076d24b3ee14fb96ca9d2233b526be653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=200707415&rft_id=info:pmid/18836193&rft_oup_id=10.1093/nar/gkn678&rfr_iscdi=true