Loading…
Examining the ribonuclease H primer grip of HIV-1 reverse transcriptase by charge neutralization of RNA/DNA hybrids
The crystal structure of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) bound to an RNA/DNA hybrid reveals an extensive network of contacts with the phosphate backbone of the DNA strand ~4-9 bp downstream from the ribonuclease H (RNase H) catalytic center. Collectively design...
Saved in:
Published in: | Nucleic acids research 2008-11, Vol.36 (20), p.6363-6371 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c557t-d86eec170afc3d32ea47eb3d694d976b076d24b3ee14fb96ca9d2233b526be653 |
---|---|
cites | cdi_FETCH-LOGICAL-c557t-d86eec170afc3d32ea47eb3d694d976b076d24b3ee14fb96ca9d2233b526be653 |
container_end_page | 6371 |
container_issue | 20 |
container_start_page | 6363 |
container_title | Nucleic acids research |
container_volume | 36 |
creator | Dash, Chandravanu Scarth, Brian J Badorrek, Christopher Götte, Matthias Le Grice, Stuart F.J |
description | The crystal structure of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) bound to an RNA/DNA hybrid reveals an extensive network of contacts with the phosphate backbone of the DNA strand ~4-9 bp downstream from the ribonuclease H (RNase H) catalytic center. Collectively designated as 'the RNase H primer grip', this motif contains a phosphate binding pocket analogous to the human and Bacillus halodurans RNases H. The notion that the RNase H primer grip mediates the trajectory of RNA/DNA hybrids accessing the RNase H active site suggests that locally neutralizing the phosphate backbone may be exploited to manipulate nucleic acid flexibility. To examine this, we introduced single and tandem methylphosphonate substitutions through the region of the DNA primer contacted by the RNase H primer grip and into the RNase H catalytic center. The ability of mutant hybrids to support RNase H and DNA polymerase activity was thereafter examined. In addition, site-specific chemical footprinting was used to evaluate movement of the DNA polymerase and RNase H domains. We show here that minor alteration to the RNase H primer can have a dramatic effect on enzyme positioning, and discuss these findings in light of recent crystallography of human RNase H containing an RNA/DNA hybrid. |
doi_str_mv | 10.1093/nar/gkn678 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2582618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkn678</oup_id><sourcerecordid>19924870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-d86eec170afc3d32ea47eb3d694d976b076d24b3ee14fb96ca9d2233b526be653</originalsourceid><addsrcrecordid>eNqN0k1v1DAQBuAIgehSuPADwEKCA1JYf8R2fKm0KoVUlCK1FFVcLCeZ7LrdtRc7qbr8erzKqnwcgJMP83jkGb9Z9pTgNwQrNnUmTOfXTsjyXjYhTNC8UILezyaYYZ4TXJR72aMYrzAmBeHFw2yPlCUTRLFJFo9uzco66-aoXwAKtvZuaJZgIqAKrYNdQUDzYNfId6g6_pITFOAGQir3wbjYpFK_xfUGNQsT5oAcDKm0tN9Nb73b3js7nU3fns7QYlMH28bH2YPOLCM82Z372cW7o8-HVX7y6f3x4ewkbziXfd6WAqAhEpuuYS2jYAoJNWuFKlolRY2laGlRMwBSdLUSjVEtpYzVnIoaBGf72cHYdz3UK2gbcNt36e1QJmy0N1b_XnF2oef-RlNeUkHK1ODVrkHw3waIvV7Z2MByaRz4IWqhZCmlEP-ERClalBL_D8SKM5Xgiz_glR-CS-vSFGOJZfrJhF6PqAk-xgDd3WwE6200dIqGHqOR8LNft_GT7rKQwMsR-GH990b56Gzs4fZOmnCthWSS6-ryq5Yf1MezS3yuq-Sfj74zXpuUpagvzikmDBPOFSOY_QCdPNuk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200707415</pqid></control><display><type>article</type><title>Examining the ribonuclease H primer grip of HIV-1 reverse transcriptase by charge neutralization of RNA/DNA hybrids</title><source>PubMed Central</source><source>Oxford Open Access Journals</source><creator>Dash, Chandravanu ; Scarth, Brian J ; Badorrek, Christopher ; Götte, Matthias ; Le Grice, Stuart F.J</creator><creatorcontrib>Dash, Chandravanu ; Scarth, Brian J ; Badorrek, Christopher ; Götte, Matthias ; Le Grice, Stuart F.J</creatorcontrib><description>The crystal structure of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) bound to an RNA/DNA hybrid reveals an extensive network of contacts with the phosphate backbone of the DNA strand ~4-9 bp downstream from the ribonuclease H (RNase H) catalytic center. Collectively designated as 'the RNase H primer grip', this motif contains a phosphate binding pocket analogous to the human and Bacillus halodurans RNases H. The notion that the RNase H primer grip mediates the trajectory of RNA/DNA hybrids accessing the RNase H active site suggests that locally neutralizing the phosphate backbone may be exploited to manipulate nucleic acid flexibility. To examine this, we introduced single and tandem methylphosphonate substitutions through the region of the DNA primer contacted by the RNase H primer grip and into the RNase H catalytic center. The ability of mutant hybrids to support RNase H and DNA polymerase activity was thereafter examined. In addition, site-specific chemical footprinting was used to evaluate movement of the DNA polymerase and RNase H domains. We show here that minor alteration to the RNase H primer can have a dramatic effect on enzyme positioning, and discuss these findings in light of recent crystallography of human RNase H containing an RNA/DNA hybrid.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkn678</identifier><identifier>PMID: 18836193</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bacillus halodurans ; DNA - biosynthesis ; DNA - chemistry ; DNA - metabolism ; DNA Footprinting ; DNA Primers - chemistry ; HIV Reverse Transcriptase - chemistry ; Human immunodeficiency virus 1 ; Models, Molecular ; Nucleic Acid Enzymes ; Organophosphorus Compounds - chemistry ; Ribonuclease H - chemistry ; Ribonuclease H - metabolism ; RNA - chemistry ; RNA - metabolism</subject><ispartof>Nucleic acids research, 2008-11, Vol.36 (20), p.6363-6371</ispartof><rights>2008 The Author(s) 2008</rights><rights>2008 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-d86eec170afc3d32ea47eb3d694d976b076d24b3ee14fb96ca9d2233b526be653</citedby><cites>FETCH-LOGICAL-c557t-d86eec170afc3d32ea47eb3d694d976b076d24b3ee14fb96ca9d2233b526be653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2582618/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2582618/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,1599,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18836193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dash, Chandravanu</creatorcontrib><creatorcontrib>Scarth, Brian J</creatorcontrib><creatorcontrib>Badorrek, Christopher</creatorcontrib><creatorcontrib>Götte, Matthias</creatorcontrib><creatorcontrib>Le Grice, Stuart F.J</creatorcontrib><title>Examining the ribonuclease H primer grip of HIV-1 reverse transcriptase by charge neutralization of RNA/DNA hybrids</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>The crystal structure of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) bound to an RNA/DNA hybrid reveals an extensive network of contacts with the phosphate backbone of the DNA strand ~4-9 bp downstream from the ribonuclease H (RNase H) catalytic center. Collectively designated as 'the RNase H primer grip', this motif contains a phosphate binding pocket analogous to the human and Bacillus halodurans RNases H. The notion that the RNase H primer grip mediates the trajectory of RNA/DNA hybrids accessing the RNase H active site suggests that locally neutralizing the phosphate backbone may be exploited to manipulate nucleic acid flexibility. To examine this, we introduced single and tandem methylphosphonate substitutions through the region of the DNA primer contacted by the RNase H primer grip and into the RNase H catalytic center. The ability of mutant hybrids to support RNase H and DNA polymerase activity was thereafter examined. In addition, site-specific chemical footprinting was used to evaluate movement of the DNA polymerase and RNase H domains. We show here that minor alteration to the RNase H primer can have a dramatic effect on enzyme positioning, and discuss these findings in light of recent crystallography of human RNase H containing an RNA/DNA hybrid.</description><subject>Bacillus halodurans</subject><subject>DNA - biosynthesis</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA Footprinting</subject><subject>DNA Primers - chemistry</subject><subject>HIV Reverse Transcriptase - chemistry</subject><subject>Human immunodeficiency virus 1</subject><subject>Models, Molecular</subject><subject>Nucleic Acid Enzymes</subject><subject>Organophosphorus Compounds - chemistry</subject><subject>Ribonuclease H - chemistry</subject><subject>Ribonuclease H - metabolism</subject><subject>RNA - chemistry</subject><subject>RNA - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqN0k1v1DAQBuAIgehSuPADwEKCA1JYf8R2fKm0KoVUlCK1FFVcLCeZ7LrdtRc7qbr8erzKqnwcgJMP83jkGb9Z9pTgNwQrNnUmTOfXTsjyXjYhTNC8UILezyaYYZ4TXJR72aMYrzAmBeHFw2yPlCUTRLFJFo9uzco66-aoXwAKtvZuaJZgIqAKrYNdQUDzYNfId6g6_pITFOAGQir3wbjYpFK_xfUGNQsT5oAcDKm0tN9Nb73b3js7nU3fns7QYlMH28bH2YPOLCM82Z372cW7o8-HVX7y6f3x4ewkbziXfd6WAqAhEpuuYS2jYAoJNWuFKlolRY2laGlRMwBSdLUSjVEtpYzVnIoaBGf72cHYdz3UK2gbcNt36e1QJmy0N1b_XnF2oef-RlNeUkHK1ODVrkHw3waIvV7Z2MByaRz4IWqhZCmlEP-ERClalBL_D8SKM5Xgiz_glR-CS-vSFGOJZfrJhF6PqAk-xgDd3WwE6200dIqGHqOR8LNft_GT7rKQwMsR-GH990b56Gzs4fZOmnCthWSS6-ryq5Yf1MezS3yuq-Sfj74zXpuUpagvzikmDBPOFSOY_QCdPNuk</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Dash, Chandravanu</creator><creator>Scarth, Brian J</creator><creator>Badorrek, Christopher</creator><creator>Götte, Matthias</creator><creator>Le Grice, Stuart F.J</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>BSCLL</scope><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081101</creationdate><title>Examining the ribonuclease H primer grip of HIV-1 reverse transcriptase by charge neutralization of RNA/DNA hybrids</title><author>Dash, Chandravanu ; Scarth, Brian J ; Badorrek, Christopher ; Götte, Matthias ; Le Grice, Stuart F.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-d86eec170afc3d32ea47eb3d694d976b076d24b3ee14fb96ca9d2233b526be653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bacillus halodurans</topic><topic>DNA - biosynthesis</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA Footprinting</topic><topic>DNA Primers - chemistry</topic><topic>HIV Reverse Transcriptase - chemistry</topic><topic>Human immunodeficiency virus 1</topic><topic>Models, Molecular</topic><topic>Nucleic Acid Enzymes</topic><topic>Organophosphorus Compounds - chemistry</topic><topic>Ribonuclease H - chemistry</topic><topic>Ribonuclease H - metabolism</topic><topic>RNA - chemistry</topic><topic>RNA - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dash, Chandravanu</creatorcontrib><creatorcontrib>Scarth, Brian J</creatorcontrib><creatorcontrib>Badorrek, Christopher</creatorcontrib><creatorcontrib>Götte, Matthias</creatorcontrib><creatorcontrib>Le Grice, Stuart F.J</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Oxford Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dash, Chandravanu</au><au>Scarth, Brian J</au><au>Badorrek, Christopher</au><au>Götte, Matthias</au><au>Le Grice, Stuart F.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Examining the ribonuclease H primer grip of HIV-1 reverse transcriptase by charge neutralization of RNA/DNA hybrids</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2008-11-01</date><risdate>2008</risdate><volume>36</volume><issue>20</issue><spage>6363</spage><epage>6371</epage><pages>6363-6371</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>The crystal structure of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) bound to an RNA/DNA hybrid reveals an extensive network of contacts with the phosphate backbone of the DNA strand ~4-9 bp downstream from the ribonuclease H (RNase H) catalytic center. Collectively designated as 'the RNase H primer grip', this motif contains a phosphate binding pocket analogous to the human and Bacillus halodurans RNases H. The notion that the RNase H primer grip mediates the trajectory of RNA/DNA hybrids accessing the RNase H active site suggests that locally neutralizing the phosphate backbone may be exploited to manipulate nucleic acid flexibility. To examine this, we introduced single and tandem methylphosphonate substitutions through the region of the DNA primer contacted by the RNase H primer grip and into the RNase H catalytic center. The ability of mutant hybrids to support RNase H and DNA polymerase activity was thereafter examined. In addition, site-specific chemical footprinting was used to evaluate movement of the DNA polymerase and RNase H domains. We show here that minor alteration to the RNase H primer can have a dramatic effect on enzyme positioning, and discuss these findings in light of recent crystallography of human RNase H containing an RNA/DNA hybrid.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>18836193</pmid><doi>10.1093/nar/gkn678</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2008-11, Vol.36 (20), p.6363-6371 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2582618 |
source | PubMed Central; Oxford Open Access Journals |
subjects | Bacillus halodurans DNA - biosynthesis DNA - chemistry DNA - metabolism DNA Footprinting DNA Primers - chemistry HIV Reverse Transcriptase - chemistry Human immunodeficiency virus 1 Models, Molecular Nucleic Acid Enzymes Organophosphorus Compounds - chemistry Ribonuclease H - chemistry Ribonuclease H - metabolism RNA - chemistry RNA - metabolism |
title | Examining the ribonuclease H primer grip of HIV-1 reverse transcriptase by charge neutralization of RNA/DNA hybrids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A25%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Examining%20the%20ribonuclease%20H%20primer%20grip%20of%20HIV-1%20reverse%20transcriptase%20by%20charge%20neutralization%20of%20RNA/DNA%20hybrids&rft.jtitle=Nucleic%20acids%20research&rft.au=Dash,%20Chandravanu&rft.date=2008-11-01&rft.volume=36&rft.issue=20&rft.spage=6363&rft.epage=6371&rft.pages=6363-6371&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkn678&rft_dat=%3Cproquest_pubme%3E19924870%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c557t-d86eec170afc3d32ea47eb3d694d976b076d24b3ee14fb96ca9d2233b526be653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=200707415&rft_id=info:pmid/18836193&rft_oup_id=10.1093/nar/gkn678&rfr_iscdi=true |