Loading…

Establishing a training set through the visual analysis of crystallization trials. Part II: crystal examples

In the automated image analysis of crystallization experiments, representative examples of outcomes can be obtained rapidly. However, while the outcomes appear to be diverse, the number of crystalline outcomes can be small. To complement a training set from the visual observation of 147 456 crystall...

Full description

Saved in:
Bibliographic Details
Published in:Acta crystallographica. Section D, Biological crystallography. Biological crystallography., 2008-11, Vol.64 (11), p.1131-1137
Main Authors: Snell, Edward H., Lauricella, Angela M., Potter, Stephen A., Luft, Joseph R., Gulde, Stacey M., Collins, Robert J., Franks, Geoff, Malkowski, Michael G., Cumbaa, Christian, Jurisica, Igor, DeTitta, George T.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5468-13951d55b0d3e80f220b93cbaf69f2341dd2b7fd179c7ec85ec26bfc127a049a3
cites
container_end_page 1137
container_issue 11
container_start_page 1131
container_title Acta crystallographica. Section D, Biological crystallography.
container_volume 64
creator Snell, Edward H.
Lauricella, Angela M.
Potter, Stephen A.
Luft, Joseph R.
Gulde, Stacey M.
Collins, Robert J.
Franks, Geoff
Malkowski, Michael G.
Cumbaa, Christian
Jurisica, Igor
DeTitta, George T.
description In the automated image analysis of crystallization experiments, representative examples of outcomes can be obtained rapidly. However, while the outcomes appear to be diverse, the number of crystalline outcomes can be small. To complement a training set from the visual observation of 147 456 crystallization outcomes, a set of crystal images was produced from 106 and 163 macromolecules under study for the North East Structural Genomics Consortium (NESG) and Structural Genomics of Pathogenic Protozoa (SGPP) groups, respectively. These crystal images have been combined with the initial training set. A description of the crystal‐enriched data set and a preliminary analysis of outcomes from the data are described.
doi_str_mv 10.1107/S0907444908028059
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2631118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69804265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5468-13951d55b0d3e80f220b93cbaf69f2341dd2b7fd179c7ec85ec26bfc127a049a3</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EoqXwA7ggn7htGdtre80BqZTSBoUPqYWIk-X1ehODsxvs3dLw63GUUIo45DQj-XlezXgQekrgmBCQLy5BgSzLUkEFtAKu7qFDwpQqAEp5_05_gB6l9A0AKGXyITogCigwTg5ROEuDqYNPC9_NscFDNL7btMkNeFjEfpwvcnX42qfRBGw6E9bJJ9y32MZ1lkPwv8zg-y673oR0jD-ZOODJ5OUfALsbs1wFlx6jB20m3JNdPUKf355dnV4U04_nk9OTaWF5Kaoij81Jw3kNDXMVtJRCrZitTStUS1lJmobWsm2IVFY6W3FnqahbS6g0UCrDjtCrbe5qrJeusa7LawW9in5p4lr3xut_Xzq_0PP-WlPBCCFVDni-C4j9j9GlQS99si4E07l-TFqoCkoq-F6QCSKASrUXpJmSUkAGyRa0sU8puvZ2bAJ6c3X939Wz8-zuvn-N3ZkzUG2Bnz649f5EffL1zesZp3zzFcVW9WlwN7eqid-1kExyPftwrt9fzt5dXUy_aMl-A3mfyWc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20277760</pqid></control><display><type>article</type><title>Establishing a training set through the visual analysis of crystallization trials. Part II: crystal examples</title><source>Wiley</source><source>Alma/SFX Local Collection</source><creator>Snell, Edward H. ; Lauricella, Angela M. ; Potter, Stephen A. ; Luft, Joseph R. ; Gulde, Stacey M. ; Collins, Robert J. ; Franks, Geoff ; Malkowski, Michael G. ; Cumbaa, Christian ; Jurisica, Igor ; DeTitta, George T.</creator><creatorcontrib>Snell, Edward H. ; Lauricella, Angela M. ; Potter, Stephen A. ; Luft, Joseph R. ; Gulde, Stacey M. ; Collins, Robert J. ; Franks, Geoff ; Malkowski, Michael G. ; Cumbaa, Christian ; Jurisica, Igor ; DeTitta, George T.</creatorcontrib><description>In the automated image analysis of crystallization experiments, representative examples of outcomes can be obtained rapidly. However, while the outcomes appear to be diverse, the number of crystalline outcomes can be small. To complement a training set from the visual observation of 147 456 crystallization outcomes, a set of crystal images was produced from 106 and 163 macromolecules under study for the North East Structural Genomics Consortium (NESG) and Structural Genomics of Pathogenic Protozoa (SGPP) groups, respectively. These crystal images have been combined with the initial training set. A description of the crystal‐enriched data set and a preliminary analysis of outcomes from the data are described.</description><identifier>ISSN: 1399-0047</identifier><identifier>ISSN: 0907-4449</identifier><identifier>EISSN: 1399-0047</identifier><identifier>DOI: 10.1107/S0907444908028059</identifier><identifier>PMID: 19020351</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Computer Graphics ; crystal images ; Crystallization ; Crystallography, X-Ray - classification ; Crystallography, X-Ray - methods ; Database Management Systems ; Humans ; image analysis ; Image Processing, Computer-Assisted - classification ; Image Processing, Computer-Assisted - methods ; Macromolecular Substances - chemistry ; Models, Molecular ; Polyethylene Glycols - chemistry ; Polyethylene Glycols - metabolism ; Research Papers ; Teaching - methods ; Teaching - trends</subject><ispartof>Acta crystallographica. Section D, Biological crystallography., 2008-11, Vol.64 (11), p.1131-1137</ispartof><rights>International Union of Crystallography, 2008</rights><rights>International Union of Crystallography 2008 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5468-13951d55b0d3e80f220b93cbaf69f2341dd2b7fd179c7ec85ec26bfc127a049a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19020351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Snell, Edward H.</creatorcontrib><creatorcontrib>Lauricella, Angela M.</creatorcontrib><creatorcontrib>Potter, Stephen A.</creatorcontrib><creatorcontrib>Luft, Joseph R.</creatorcontrib><creatorcontrib>Gulde, Stacey M.</creatorcontrib><creatorcontrib>Collins, Robert J.</creatorcontrib><creatorcontrib>Franks, Geoff</creatorcontrib><creatorcontrib>Malkowski, Michael G.</creatorcontrib><creatorcontrib>Cumbaa, Christian</creatorcontrib><creatorcontrib>Jurisica, Igor</creatorcontrib><creatorcontrib>DeTitta, George T.</creatorcontrib><title>Establishing a training set through the visual analysis of crystallization trials. Part II: crystal examples</title><title>Acta crystallographica. Section D, Biological crystallography.</title><addtitle>Acta Cryst. D</addtitle><description>In the automated image analysis of crystallization experiments, representative examples of outcomes can be obtained rapidly. However, while the outcomes appear to be diverse, the number of crystalline outcomes can be small. To complement a training set from the visual observation of 147 456 crystallization outcomes, a set of crystal images was produced from 106 and 163 macromolecules under study for the North East Structural Genomics Consortium (NESG) and Structural Genomics of Pathogenic Protozoa (SGPP) groups, respectively. These crystal images have been combined with the initial training set. A description of the crystal‐enriched data set and a preliminary analysis of outcomes from the data are described.</description><subject>Computer Graphics</subject><subject>crystal images</subject><subject>Crystallization</subject><subject>Crystallography, X-Ray - classification</subject><subject>Crystallography, X-Ray - methods</subject><subject>Database Management Systems</subject><subject>Humans</subject><subject>image analysis</subject><subject>Image Processing, Computer-Assisted - classification</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Macromolecular Substances - chemistry</subject><subject>Models, Molecular</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polyethylene Glycols - metabolism</subject><subject>Research Papers</subject><subject>Teaching - methods</subject><subject>Teaching - trends</subject><issn>1399-0047</issn><issn>0907-4449</issn><issn>1399-0047</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkU1vEzEQhi0EoqXwA7ggn7htGdtre80BqZTSBoUPqYWIk-X1ehODsxvs3dLw63GUUIo45DQj-XlezXgQekrgmBCQLy5BgSzLUkEFtAKu7qFDwpQqAEp5_05_gB6l9A0AKGXyITogCigwTg5ROEuDqYNPC9_NscFDNL7btMkNeFjEfpwvcnX42qfRBGw6E9bJJ9y32MZ1lkPwv8zg-y673oR0jD-ZOODJ5OUfALsbs1wFlx6jB20m3JNdPUKf355dnV4U04_nk9OTaWF5Kaoij81Jw3kNDXMVtJRCrZitTStUS1lJmobWsm2IVFY6W3FnqahbS6g0UCrDjtCrbe5qrJeusa7LawW9in5p4lr3xut_Xzq_0PP-WlPBCCFVDni-C4j9j9GlQS99si4E07l-TFqoCkoq-F6QCSKASrUXpJmSUkAGyRa0sU8puvZ2bAJ6c3X939Wz8-zuvn-N3ZkzUG2Bnz649f5EffL1zesZp3zzFcVW9WlwN7eqid-1kExyPftwrt9fzt5dXUy_aMl-A3mfyWc</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Snell, Edward H.</creator><creator>Lauricella, Angela M.</creator><creator>Potter, Stephen A.</creator><creator>Luft, Joseph R.</creator><creator>Gulde, Stacey M.</creator><creator>Collins, Robert J.</creator><creator>Franks, Geoff</creator><creator>Malkowski, Michael G.</creator><creator>Cumbaa, Christian</creator><creator>Jurisica, Igor</creator><creator>DeTitta, George T.</creator><general>International Union of Crystallography</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200811</creationdate><title>Establishing a training set through the visual analysis of crystallization trials. Part II: crystal examples</title><author>Snell, Edward H. ; Lauricella, Angela M. ; Potter, Stephen A. ; Luft, Joseph R. ; Gulde, Stacey M. ; Collins, Robert J. ; Franks, Geoff ; Malkowski, Michael G. ; Cumbaa, Christian ; Jurisica, Igor ; DeTitta, George T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5468-13951d55b0d3e80f220b93cbaf69f2341dd2b7fd179c7ec85ec26bfc127a049a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computer Graphics</topic><topic>crystal images</topic><topic>Crystallization</topic><topic>Crystallography, X-Ray - classification</topic><topic>Crystallography, X-Ray - methods</topic><topic>Database Management Systems</topic><topic>Humans</topic><topic>image analysis</topic><topic>Image Processing, Computer-Assisted - classification</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Macromolecular Substances - chemistry</topic><topic>Models, Molecular</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polyethylene Glycols - metabolism</topic><topic>Research Papers</topic><topic>Teaching - methods</topic><topic>Teaching - trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snell, Edward H.</creatorcontrib><creatorcontrib>Lauricella, Angela M.</creatorcontrib><creatorcontrib>Potter, Stephen A.</creatorcontrib><creatorcontrib>Luft, Joseph R.</creatorcontrib><creatorcontrib>Gulde, Stacey M.</creatorcontrib><creatorcontrib>Collins, Robert J.</creatorcontrib><creatorcontrib>Franks, Geoff</creatorcontrib><creatorcontrib>Malkowski, Michael G.</creatorcontrib><creatorcontrib>Cumbaa, Christian</creatorcontrib><creatorcontrib>Jurisica, Igor</creatorcontrib><creatorcontrib>DeTitta, George T.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snell, Edward H.</au><au>Lauricella, Angela M.</au><au>Potter, Stephen A.</au><au>Luft, Joseph R.</au><au>Gulde, Stacey M.</au><au>Collins, Robert J.</au><au>Franks, Geoff</au><au>Malkowski, Michael G.</au><au>Cumbaa, Christian</au><au>Jurisica, Igor</au><au>DeTitta, George T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Establishing a training set through the visual analysis of crystallization trials. Part II: crystal examples</atitle><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle><addtitle>Acta Cryst. D</addtitle><date>2008-11</date><risdate>2008</risdate><volume>64</volume><issue>11</issue><spage>1131</spage><epage>1137</epage><pages>1131-1137</pages><issn>1399-0047</issn><issn>0907-4449</issn><eissn>1399-0047</eissn><abstract>In the automated image analysis of crystallization experiments, representative examples of outcomes can be obtained rapidly. However, while the outcomes appear to be diverse, the number of crystalline outcomes can be small. To complement a training set from the visual observation of 147 456 crystallization outcomes, a set of crystal images was produced from 106 and 163 macromolecules under study for the North East Structural Genomics Consortium (NESG) and Structural Genomics of Pathogenic Protozoa (SGPP) groups, respectively. These crystal images have been combined with the initial training set. A description of the crystal‐enriched data set and a preliminary analysis of outcomes from the data are described.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>19020351</pmid><doi>10.1107/S0907444908028059</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1399-0047
ispartof Acta crystallographica. Section D, Biological crystallography., 2008-11, Vol.64 (11), p.1131-1137
issn 1399-0047
0907-4449
1399-0047
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2631118
source Wiley; Alma/SFX Local Collection
subjects Computer Graphics
crystal images
Crystallization
Crystallography, X-Ray - classification
Crystallography, X-Ray - methods
Database Management Systems
Humans
image analysis
Image Processing, Computer-Assisted - classification
Image Processing, Computer-Assisted - methods
Macromolecular Substances - chemistry
Models, Molecular
Polyethylene Glycols - chemistry
Polyethylene Glycols - metabolism
Research Papers
Teaching - methods
Teaching - trends
title Establishing a training set through the visual analysis of crystallization trials. Part II: crystal examples
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A48%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Establishing%20a%20training%20set%20through%20the%20visual%20analysis%20of%20crystallization%20trials.%20Part%20II:%20crystal%20examples&rft.jtitle=Acta%20crystallographica.%20Section%20D,%20Biological%20crystallography.&rft.au=Snell,%20Edward%20H.&rft.date=2008-11&rft.volume=64&rft.issue=11&rft.spage=1131&rft.epage=1137&rft.pages=1131-1137&rft.issn=1399-0047&rft.eissn=1399-0047&rft_id=info:doi/10.1107/S0907444908028059&rft_dat=%3Cproquest_pubme%3E69804265%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5468-13951d55b0d3e80f220b93cbaf69f2341dd2b7fd179c7ec85ec26bfc127a049a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20277760&rft_id=info:pmid/19020351&rfr_iscdi=true