Loading…

Enzymatic processing of amelogenin during continuous crystallization of apatite

Dental enamel forms through a protein-controlled mineralization and enzymatic degradation process with a nanoscale precision that new engineering technologies may be able to mimic. Recombinant full-length human amelogenin (rH174) and a matrix-metalloprotease (MMP-20) were used in a pH-stat titration...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2008-12, Vol.23 (12), p.3184-3195
Main Authors: Uskoković, V., Kim, M-K., Li, W., Habelitz, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c504t-f55a86b86998fba9dd0f06527d6e9725b447aa06c7f8fb48bc8b4fe2f409641d3
cites cdi_FETCH-LOGICAL-c504t-f55a86b86998fba9dd0f06527d6e9725b447aa06c7f8fb48bc8b4fe2f409641d3
container_end_page 3195
container_issue 12
container_start_page 3184
container_title Journal of materials research
container_volume 23
creator Uskoković, V.
Kim, M-K.
Li, W.
Habelitz, S.
description Dental enamel forms through a protein-controlled mineralization and enzymatic degradation process with a nanoscale precision that new engineering technologies may be able to mimic. Recombinant full-length human amelogenin (rH174) and a matrix-metalloprotease (MMP-20) were used in a pH-stat titration system that enabled a continuous supply of calcium and phosphate ions over several days, mimicking the initial stages of matrix processing and crystallization in enamel in vitro. Effects on the self-assembly and crystal growth from a saturated aqueous solution containing 0.4 mg/mL rH174 and MMP-20 with the weight ratio of 1:1000 with respect to rH174 were investigated. A transition from nanospheres to fibrous amelogenin assemblies was facilitated under conditions that involved interaction between rH174 and its proteolytic cleavage products. Despite continuous titration, the levels of calcium exhibited a consistent trend of decreasing, thereby indicating a possible role in protein self-assembly. This study suggests that mimicking enamel formation in vitro requires the synergy between the aspects of matrix self-assembly, proteolysis, and crystallization.
doi_str_mv 10.1557/JMR.2008.0387
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2631549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_JMR_2008_0387</cupid><sourcerecordid>1835546647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-f55a86b86998fba9dd0f06527d6e9725b447aa06c7f8fb48bc8b4fe2f409641d3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EokvhyBXlyCVb2_FXLkhQlQW0VaFqL1wsx7EXl8RO7QSx_etx2KiUA-Jky_PzmzfzAHiJ4BpRyk8-nV-uMYRiDSvBH4EVhoSUtMLsMVhBIUiJa0SOwLOUbiBEFHLyFByhGnGOBF6BizN_t-_V6HQxxKBNSs7vimAL1Zsu7Ix3vminOD_q4EfnpzClQsd9GlXXubv8M_jf_JCvo3kOnljVJfNiOY_B9fuzq9MP5fZi8_H07bbUFJKxtJQqwRrB6lrYRtVtCy1kFPOWmZpj2hDClYJMc5vrRDRaNMQabAmsGUFtdQzeHHSHqelNq40fo-rkEF2v4l4G5eTfFe--yV34ITGrECV1Fni9CMRwO5k0yt4lbbpOeZNHlEhUlBLGCM9oeUB1DClFY-_bICjnEGQOQc4hyDmEzL966O0PvWw9A-sDkIZ5sybKmzBFn_f1T8XFgUuj-XkvqOJ3yXjFqWSbL5KLq3dfP9dbucn8yeJY9U107c78r8Mvtt2yCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835546647</pqid></control><display><type>article</type><title>Enzymatic processing of amelogenin during continuous crystallization of apatite</title><source>Springer Link</source><creator>Uskoković, V. ; Kim, M-K. ; Li, W. ; Habelitz, S.</creator><creatorcontrib>Uskoković, V. ; Kim, M-K. ; Li, W. ; Habelitz, S.</creatorcontrib><description>Dental enamel forms through a protein-controlled mineralization and enzymatic degradation process with a nanoscale precision that new engineering technologies may be able to mimic. Recombinant full-length human amelogenin (rH174) and a matrix-metalloprotease (MMP-20) were used in a pH-stat titration system that enabled a continuous supply of calcium and phosphate ions over several days, mimicking the initial stages of matrix processing and crystallization in enamel in vitro. Effects on the self-assembly and crystal growth from a saturated aqueous solution containing 0.4 mg/mL rH174 and MMP-20 with the weight ratio of 1:1000 with respect to rH174 were investigated. A transition from nanospheres to fibrous amelogenin assemblies was facilitated under conditions that involved interaction between rH174 and its proteolytic cleavage products. Despite continuous titration, the levels of calcium exhibited a consistent trend of decreasing, thereby indicating a possible role in protein self-assembly. This study suggests that mimicking enamel formation in vitro requires the synergy between the aspects of matrix self-assembly, proteolysis, and crystallization.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/JMR.2008.0387</identifier><identifier>PMID: 19177182</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Applied and Technical Physics ; Biomaterials ; Biomimetic (assembly) ; Ceramic ; Inorganic Chemistry ; Materials Engineering ; Materials Science ; Nanotechnology ; Nucleation &amp; growth</subject><ispartof>Journal of materials research, 2008-12, Vol.23 (12), p.3184-3195</ispartof><rights>Copyright © Materials Research Society 2008</rights><rights>The Materials Research Society 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-f55a86b86998fba9dd0f06527d6e9725b447aa06c7f8fb48bc8b4fe2f409641d3</citedby><cites>FETCH-LOGICAL-c504t-f55a86b86998fba9dd0f06527d6e9725b447aa06c7f8fb48bc8b4fe2f409641d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19177182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uskoković, V.</creatorcontrib><creatorcontrib>Kim, M-K.</creatorcontrib><creatorcontrib>Li, W.</creatorcontrib><creatorcontrib>Habelitz, S.</creatorcontrib><title>Enzymatic processing of amelogenin during continuous crystallization of apatite</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Dental enamel forms through a protein-controlled mineralization and enzymatic degradation process with a nanoscale precision that new engineering technologies may be able to mimic. Recombinant full-length human amelogenin (rH174) and a matrix-metalloprotease (MMP-20) were used in a pH-stat titration system that enabled a continuous supply of calcium and phosphate ions over several days, mimicking the initial stages of matrix processing and crystallization in enamel in vitro. Effects on the self-assembly and crystal growth from a saturated aqueous solution containing 0.4 mg/mL rH174 and MMP-20 with the weight ratio of 1:1000 with respect to rH174 were investigated. A transition from nanospheres to fibrous amelogenin assemblies was facilitated under conditions that involved interaction between rH174 and its proteolytic cleavage products. Despite continuous titration, the levels of calcium exhibited a consistent trend of decreasing, thereby indicating a possible role in protein self-assembly. This study suggests that mimicking enamel formation in vitro requires the synergy between the aspects of matrix self-assembly, proteolysis, and crystallization.</description><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Biomimetic (assembly)</subject><subject>Ceramic</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nucleation &amp; growth</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkc1v1DAQxS0EokvhyBXlyCVb2_FXLkhQlQW0VaFqL1wsx7EXl8RO7QSx_etx2KiUA-Jky_PzmzfzAHiJ4BpRyk8-nV-uMYRiDSvBH4EVhoSUtMLsMVhBIUiJa0SOwLOUbiBEFHLyFByhGnGOBF6BizN_t-_V6HQxxKBNSs7vimAL1Zsu7Ix3vminOD_q4EfnpzClQsd9GlXXubv8M_jf_JCvo3kOnljVJfNiOY_B9fuzq9MP5fZi8_H07bbUFJKxtJQqwRrB6lrYRtVtCy1kFPOWmZpj2hDClYJMc5vrRDRaNMQabAmsGUFtdQzeHHSHqelNq40fo-rkEF2v4l4G5eTfFe--yV34ITGrECV1Fni9CMRwO5k0yt4lbbpOeZNHlEhUlBLGCM9oeUB1DClFY-_bICjnEGQOQc4hyDmEzL966O0PvWw9A-sDkIZ5sybKmzBFn_f1T8XFgUuj-XkvqOJ3yXjFqWSbL5KLq3dfP9dbucn8yeJY9U107c78r8Mvtt2yCw</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Uskoković, V.</creator><creator>Kim, M-K.</creator><creator>Li, W.</creator><creator>Habelitz, S.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081201</creationdate><title>Enzymatic processing of amelogenin during continuous crystallization of apatite</title><author>Uskoković, V. ; Kim, M-K. ; Li, W. ; Habelitz, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-f55a86b86998fba9dd0f06527d6e9725b447aa06c7f8fb48bc8b4fe2f409641d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Biomimetic (assembly)</topic><topic>Ceramic</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nucleation &amp; growth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uskoković, V.</creatorcontrib><creatorcontrib>Kim, M-K.</creatorcontrib><creatorcontrib>Li, W.</creatorcontrib><creatorcontrib>Habelitz, S.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uskoković, V.</au><au>Kim, M-K.</au><au>Li, W.</au><au>Habelitz, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enzymatic processing of amelogenin during continuous crystallization of apatite</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>23</volume><issue>12</issue><spage>3184</spage><epage>3195</epage><pages>3184-3195</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Dental enamel forms through a protein-controlled mineralization and enzymatic degradation process with a nanoscale precision that new engineering technologies may be able to mimic. Recombinant full-length human amelogenin (rH174) and a matrix-metalloprotease (MMP-20) were used in a pH-stat titration system that enabled a continuous supply of calcium and phosphate ions over several days, mimicking the initial stages of matrix processing and crystallization in enamel in vitro. Effects on the self-assembly and crystal growth from a saturated aqueous solution containing 0.4 mg/mL rH174 and MMP-20 with the weight ratio of 1:1000 with respect to rH174 were investigated. A transition from nanospheres to fibrous amelogenin assemblies was facilitated under conditions that involved interaction between rH174 and its proteolytic cleavage products. Despite continuous titration, the levels of calcium exhibited a consistent trend of decreasing, thereby indicating a possible role in protein self-assembly. This study suggests that mimicking enamel formation in vitro requires the synergy between the aspects of matrix self-assembly, proteolysis, and crystallization.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><pmid>19177182</pmid><doi>10.1557/JMR.2008.0387</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2008-12, Vol.23 (12), p.3184-3195
issn 0884-2914
2044-5326
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2631549
source Springer Link
subjects Applied and Technical Physics
Biomaterials
Biomimetic (assembly)
Ceramic
Inorganic Chemistry
Materials Engineering
Materials Science
Nanotechnology
Nucleation & growth
title Enzymatic processing of amelogenin during continuous crystallization of apatite
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A46%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enzymatic%20processing%20of%20amelogenin%20during%20continuous%20crystallization%20of%20apatite&rft.jtitle=Journal%20of%20materials%20research&rft.au=Uskokovi%C4%87,%20V.&rft.date=2008-12-01&rft.volume=23&rft.issue=12&rft.spage=3184&rft.epage=3195&rft.pages=3184-3195&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/JMR.2008.0387&rft_dat=%3Cproquest_pubme%3E1835546647%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-f55a86b86998fba9dd0f06527d6e9725b447aa06c7f8fb48bc8b4fe2f409641d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835546647&rft_id=info:pmid/19177182&rft_cupid=10_1557_JMR_2008_0387&rfr_iscdi=true