Loading…

Prognostic gene signatures for non-small-cell lung cancer

Resectable non-small-cell lung cancer (NSCLC) patients have poor prognosis, with 30-50% relapsing within 5 years. Current staging criteria do not fully capture the complexity of this disease. Survival could be improved by identification of those early-stage patients who are most likely to benefit fr...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2009-02, Vol.106 (8), p.2824-2828
Main Authors: Boutros, Paul C, Lau, Suzanne K, Pintilie, Melania, Liu, Ni, Shepherd, Frances A, Der, Sandy D, Tsao, Ming-Sound, Penn, Linda Z, Jurisica, Igor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c616t-7c375ebaa859d180ee14272aed9da0857f16ed7f463a4007ff833fccaacef3ee3
cites cdi_FETCH-LOGICAL-c616t-7c375ebaa859d180ee14272aed9da0857f16ed7f463a4007ff833fccaacef3ee3
container_end_page 2828
container_issue 8
container_start_page 2824
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 106
creator Boutros, Paul C
Lau, Suzanne K
Pintilie, Melania
Liu, Ni
Shepherd, Frances A
Der, Sandy D
Tsao, Ming-Sound
Penn, Linda Z
Jurisica, Igor
description Resectable non-small-cell lung cancer (NSCLC) patients have poor prognosis, with 30-50% relapsing within 5 years. Current staging criteria do not fully capture the complexity of this disease. Survival could be improved by identification of those early-stage patients who are most likely to benefit from adjuvant therapy. Molecular classification by using mRNA expression profiles has led to multiple, poorly overlapping signatures. We hypothesized that differing statistical methodologies contribute to this lack of overlap. To test this hypothesis, we analyzed our previously published quantitative RT-PCR dataset with a semisupervised method. A 6-gene signature was identified and validated in 4 independent public microarray datasets that represent a range of tumor histologies and stages. This result demonstrated that at least 2 prognostic signatures can be derived from this single dataset. We next estimated the total number of prognostic signatures in this dataset with a 10-million-signature permutation study. Our 6-gene signature was among the top 0.02% of signatures with maximum verifiability, reaffirming its efficacy. Importantly, this analysis identified 1,789 unique signatures, implying that our dataset contains >500,000 verifiable prognostic signatures for NSCLC. This result appears to rationalize the observed lack of overlap among reported NSCLC prognostic signatures.
doi_str_mv 10.1073/pnas.0809444106
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2636731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40421793</jstor_id><sourcerecordid>40421793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c616t-7c375ebaa859d180ee14272aed9da0857f16ed7f463a4007ff833fccaacef3ee3</originalsourceid><addsrcrecordid>eNqF0cuLFDEQB-Agijuunj2pjQc99W7l0XlcFmTxBQsKuueQzVTaHnqSMekW_e9NM8POKoKnHOqrX1IpQp5SOKOg-PkuunIGGowQgoK8R1YUDG2lMHCfrACYarVg4oQ8KmUDAKbT8JCcUEONNJqviPmcUx9TmQbf9BixKUMf3TRnLE1IuYkptmXrxrH1OI7NOMe-8S56zI_Jg-DGgk8O5ym5fvf26-WH9urT-4-Xb65aL6mcWuW56vDGOd2ZNdWASAVTzOHarB3oTgUqca2CkNwJABWC5jx475zHwBH5KbnY5-7mmy2uPcYpu9Hu8rB1-ZdNbrB_VuLwzfbph2WSS8VpDXh1CMjp-4xlstuhLNO4iGkuVkojldL_hwwYB6q7Cl_-BTdpzrH-QjVUgBKdqOh8j3xOpWQMt0-mYJfl2WV59ri82vH87qRHf9hWBa8PYOk8xkmrLdNM2DCP44Q_pztR_5YVPNuDTZlSvhUCBKPKLFe92NeDS9b1eSj2-ksdrn5AZ7SinP8GBBLAyw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201407454</pqid></control><display><type>article</type><title>Prognostic gene signatures for non-small-cell lung cancer</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Boutros, Paul C ; Lau, Suzanne K ; Pintilie, Melania ; Liu, Ni ; Shepherd, Frances A ; Der, Sandy D ; Tsao, Ming-Sound ; Penn, Linda Z ; Jurisica, Igor</creator><creatorcontrib>Boutros, Paul C ; Lau, Suzanne K ; Pintilie, Melania ; Liu, Ni ; Shepherd, Frances A ; Der, Sandy D ; Tsao, Ming-Sound ; Penn, Linda Z ; Jurisica, Igor</creatorcontrib><description>Resectable non-small-cell lung cancer (NSCLC) patients have poor prognosis, with 30-50% relapsing within 5 years. Current staging criteria do not fully capture the complexity of this disease. Survival could be improved by identification of those early-stage patients who are most likely to benefit from adjuvant therapy. Molecular classification by using mRNA expression profiles has led to multiple, poorly overlapping signatures. We hypothesized that differing statistical methodologies contribute to this lack of overlap. To test this hypothesis, we analyzed our previously published quantitative RT-PCR dataset with a semisupervised method. A 6-gene signature was identified and validated in 4 independent public microarray datasets that represent a range of tumor histologies and stages. This result demonstrated that at least 2 prognostic signatures can be derived from this single dataset. We next estimated the total number of prognostic signatures in this dataset with a 10-million-signature permutation study. Our 6-gene signature was among the top 0.02% of signatures with maximum verifiability, reaffirming its efficacy. Importantly, this analysis identified 1,789 unique signatures, implying that our dataset contains &gt;500,000 verifiable prognostic signatures for NSCLC. This result appears to rationalize the observed lack of overlap among reported NSCLC prognostic signatures.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0809444106</identifier><identifier>PMID: 19196983</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenocarcinoma ; Adjuvant therapy ; Adjuvants ; Biological Sciences ; Carcinoma, Non-Small-Cell Lung - genetics ; Cells ; Classification ; Datasets ; Gene expression ; Gene Expression Profiling ; Humans ; Lung cancer ; Lung neoplasms ; Lung Neoplasms - genetics ; Medical prognosis ; Non small cell lung carcinoma ; Polymerase chain reaction ; Prognosis ; Reverse Transcriptase Polymerase Chain Reaction ; Ribonucleic acid ; RNA ; RNA, Messenger - genetics ; Signatures ; Squamous cell carcinoma ; Statistical significance ; Statistics ; Survival ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-02, Vol.106 (8), p.2824-2828</ispartof><rights>Copyright National Academy of Sciences Feb 24, 2009</rights><rights>2009 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c616t-7c375ebaa859d180ee14272aed9da0857f16ed7f463a4007ff833fccaacef3ee3</citedby><cites>FETCH-LOGICAL-c616t-7c375ebaa859d180ee14272aed9da0857f16ed7f463a4007ff833fccaacef3ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/8.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40421793$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40421793$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19196983$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boutros, Paul C</creatorcontrib><creatorcontrib>Lau, Suzanne K</creatorcontrib><creatorcontrib>Pintilie, Melania</creatorcontrib><creatorcontrib>Liu, Ni</creatorcontrib><creatorcontrib>Shepherd, Frances A</creatorcontrib><creatorcontrib>Der, Sandy D</creatorcontrib><creatorcontrib>Tsao, Ming-Sound</creatorcontrib><creatorcontrib>Penn, Linda Z</creatorcontrib><creatorcontrib>Jurisica, Igor</creatorcontrib><title>Prognostic gene signatures for non-small-cell lung cancer</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Resectable non-small-cell lung cancer (NSCLC) patients have poor prognosis, with 30-50% relapsing within 5 years. Current staging criteria do not fully capture the complexity of this disease. Survival could be improved by identification of those early-stage patients who are most likely to benefit from adjuvant therapy. Molecular classification by using mRNA expression profiles has led to multiple, poorly overlapping signatures. We hypothesized that differing statistical methodologies contribute to this lack of overlap. To test this hypothesis, we analyzed our previously published quantitative RT-PCR dataset with a semisupervised method. A 6-gene signature was identified and validated in 4 independent public microarray datasets that represent a range of tumor histologies and stages. This result demonstrated that at least 2 prognostic signatures can be derived from this single dataset. We next estimated the total number of prognostic signatures in this dataset with a 10-million-signature permutation study. Our 6-gene signature was among the top 0.02% of signatures with maximum verifiability, reaffirming its efficacy. Importantly, this analysis identified 1,789 unique signatures, implying that our dataset contains &gt;500,000 verifiable prognostic signatures for NSCLC. This result appears to rationalize the observed lack of overlap among reported NSCLC prognostic signatures.</description><subject>Adenocarcinoma</subject><subject>Adjuvant therapy</subject><subject>Adjuvants</subject><subject>Biological Sciences</subject><subject>Carcinoma, Non-Small-Cell Lung - genetics</subject><subject>Cells</subject><subject>Classification</subject><subject>Datasets</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Humans</subject><subject>Lung cancer</subject><subject>Lung neoplasms</subject><subject>Lung Neoplasms - genetics</subject><subject>Medical prognosis</subject><subject>Non small cell lung carcinoma</subject><subject>Polymerase chain reaction</subject><subject>Prognosis</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Messenger - genetics</subject><subject>Signatures</subject><subject>Squamous cell carcinoma</subject><subject>Statistical significance</subject><subject>Statistics</subject><subject>Survival</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqF0cuLFDEQB-Agijuunj2pjQc99W7l0XlcFmTxBQsKuueQzVTaHnqSMekW_e9NM8POKoKnHOqrX1IpQp5SOKOg-PkuunIGGowQgoK8R1YUDG2lMHCfrACYarVg4oQ8KmUDAKbT8JCcUEONNJqviPmcUx9TmQbf9BixKUMf3TRnLE1IuYkptmXrxrH1OI7NOMe-8S56zI_Jg-DGgk8O5ym5fvf26-WH9urT-4-Xb65aL6mcWuW56vDGOd2ZNdWASAVTzOHarB3oTgUqca2CkNwJABWC5jx475zHwBH5KbnY5-7mmy2uPcYpu9Hu8rB1-ZdNbrB_VuLwzfbph2WSS8VpDXh1CMjp-4xlstuhLNO4iGkuVkojldL_hwwYB6q7Cl_-BTdpzrH-QjVUgBKdqOh8j3xOpWQMt0-mYJfl2WV59ri82vH87qRHf9hWBa8PYOk8xkmrLdNM2DCP44Q_pztR_5YVPNuDTZlSvhUCBKPKLFe92NeDS9b1eSj2-ksdrn5AZ7SinP8GBBLAyw</recordid><startdate>20090224</startdate><enddate>20090224</enddate><creator>Boutros, Paul C</creator><creator>Lau, Suzanne K</creator><creator>Pintilie, Melania</creator><creator>Liu, Ni</creator><creator>Shepherd, Frances A</creator><creator>Der, Sandy D</creator><creator>Tsao, Ming-Sound</creator><creator>Penn, Linda Z</creator><creator>Jurisica, Igor</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090224</creationdate><title>Prognostic gene signatures for non-small-cell lung cancer</title><author>Boutros, Paul C ; Lau, Suzanne K ; Pintilie, Melania ; Liu, Ni ; Shepherd, Frances A ; Der, Sandy D ; Tsao, Ming-Sound ; Penn, Linda Z ; Jurisica, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c616t-7c375ebaa859d180ee14272aed9da0857f16ed7f463a4007ff833fccaacef3ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adenocarcinoma</topic><topic>Adjuvant therapy</topic><topic>Adjuvants</topic><topic>Biological Sciences</topic><topic>Carcinoma, Non-Small-Cell Lung - genetics</topic><topic>Cells</topic><topic>Classification</topic><topic>Datasets</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Humans</topic><topic>Lung cancer</topic><topic>Lung neoplasms</topic><topic>Lung Neoplasms - genetics</topic><topic>Medical prognosis</topic><topic>Non small cell lung carcinoma</topic><topic>Polymerase chain reaction</topic><topic>Prognosis</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Messenger - genetics</topic><topic>Signatures</topic><topic>Squamous cell carcinoma</topic><topic>Statistical significance</topic><topic>Statistics</topic><topic>Survival</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boutros, Paul C</creatorcontrib><creatorcontrib>Lau, Suzanne K</creatorcontrib><creatorcontrib>Pintilie, Melania</creatorcontrib><creatorcontrib>Liu, Ni</creatorcontrib><creatorcontrib>Shepherd, Frances A</creatorcontrib><creatorcontrib>Der, Sandy D</creatorcontrib><creatorcontrib>Tsao, Ming-Sound</creatorcontrib><creatorcontrib>Penn, Linda Z</creatorcontrib><creatorcontrib>Jurisica, Igor</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boutros, Paul C</au><au>Lau, Suzanne K</au><au>Pintilie, Melania</au><au>Liu, Ni</au><au>Shepherd, Frances A</au><au>Der, Sandy D</au><au>Tsao, Ming-Sound</au><au>Penn, Linda Z</au><au>Jurisica, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prognostic gene signatures for non-small-cell lung cancer</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-02-24</date><risdate>2009</risdate><volume>106</volume><issue>8</issue><spage>2824</spage><epage>2828</epage><pages>2824-2828</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Resectable non-small-cell lung cancer (NSCLC) patients have poor prognosis, with 30-50% relapsing within 5 years. Current staging criteria do not fully capture the complexity of this disease. Survival could be improved by identification of those early-stage patients who are most likely to benefit from adjuvant therapy. Molecular classification by using mRNA expression profiles has led to multiple, poorly overlapping signatures. We hypothesized that differing statistical methodologies contribute to this lack of overlap. To test this hypothesis, we analyzed our previously published quantitative RT-PCR dataset with a semisupervised method. A 6-gene signature was identified and validated in 4 independent public microarray datasets that represent a range of tumor histologies and stages. This result demonstrated that at least 2 prognostic signatures can be derived from this single dataset. We next estimated the total number of prognostic signatures in this dataset with a 10-million-signature permutation study. Our 6-gene signature was among the top 0.02% of signatures with maximum verifiability, reaffirming its efficacy. Importantly, this analysis identified 1,789 unique signatures, implying that our dataset contains &gt;500,000 verifiable prognostic signatures for NSCLC. This result appears to rationalize the observed lack of overlap among reported NSCLC prognostic signatures.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19196983</pmid><doi>10.1073/pnas.0809444106</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2009-02, Vol.106 (8), p.2824-2828
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2636731
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Adenocarcinoma
Adjuvant therapy
Adjuvants
Biological Sciences
Carcinoma, Non-Small-Cell Lung - genetics
Cells
Classification
Datasets
Gene expression
Gene Expression Profiling
Humans
Lung cancer
Lung neoplasms
Lung Neoplasms - genetics
Medical prognosis
Non small cell lung carcinoma
Polymerase chain reaction
Prognosis
Reverse Transcriptase Polymerase Chain Reaction
Ribonucleic acid
RNA
RNA, Messenger - genetics
Signatures
Squamous cell carcinoma
Statistical significance
Statistics
Survival
Tumors
title Prognostic gene signatures for non-small-cell lung cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A43%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prognostic%20gene%20signatures%20for%20non-small-cell%20lung%20cancer&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Boutros,%20Paul%20C&rft.date=2009-02-24&rft.volume=106&rft.issue=8&rft.spage=2824&rft.epage=2828&rft.pages=2824-2828&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0809444106&rft_dat=%3Cjstor_pubme%3E40421793%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c616t-7c375ebaa859d180ee14272aed9da0857f16ed7f463a4007ff833fccaacef3ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201407454&rft_id=info:pmid/19196983&rft_jstor_id=40421793&rfr_iscdi=true