Loading…

How myasthenia gravis alters the safety factor for neuromuscular transmission

Abstract Myasthenia gravis (MG), the most common of autoimmune myasthenic syndromes, is characterized by antibodies directed against the skeletal muscle acetylcholine receptors (AChRs). Endplate Na+ channels ensure the efficiency of neuromuscular transmission by reducing the threshold depolarization...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuroimmunology 2008-09, Vol.201, p.13-20
Main Authors: Ruff, Robert L, Lennon, Vanda A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Myasthenia gravis (MG), the most common of autoimmune myasthenic syndromes, is characterized by antibodies directed against the skeletal muscle acetylcholine receptors (AChRs). Endplate Na+ channels ensure the efficiency of neuromuscular transmission by reducing the threshold depolarization needed to trigger an action potential. Postsynaptic AChRs and voltage-gated Na+ channels are both lost from the neuromuscular junction in MG. This study examined the impact of postsynaptic voltage-gated Na+ channel loss on the safety factor for neuromuscular transmission. In intercostal nerve–muscle preparations from MG patients, we found that endplate AChR loss decreases the size of the endplate potential, and endplate Na+ channel loss increases the threshold depolarization needed to produce a muscle action potential. To evaluate whether AChR-specific antibody impairs the function of Na+ channels, we tested omohyoid nerve–muscle preparations from rats injected with monoclonal myasthenogenic IgG (passive transfer model of MG [PTMG]). The AChR antibody that produces PTMG did not alter the function of Na+ channels. We conclude that loss of endplate Na+ channels in MG is due to complement-mediated loss of endplate membrane rather than a direct effect of myasthenogenic antibodies on endplate Na+ channels.
ISSN:0165-5728
1872-8421
DOI:10.1016/j.jneuroim.2008.04.038