Loading…
State-of-the-Science Workshop Report: Issues and Approaches in Low-Dose: Response Extrapolation for Environmental Health Risk Assessment
Low-dose extrapolation model selection for evaluating the health effects of environmental pollutants is a key component of the risk assessment process. At a workshop held in Baltimore, Maryland, on 23-24 April 2007, sponsored by U.S. Environmental Protection Agency and Johns Hopkins Risk Sciences an...
Saved in:
Published in: | Environmental health perspectives 2009-02, Vol.117 (2), p.283-287 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c692t-59dc94ec68c9b09e853f10e8afba7beb59dba252d241b7601ba84392c70d7e2f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c692t-59dc94ec68c9b09e853f10e8afba7beb59dba252d241b7601ba84392c70d7e2f3 |
container_end_page | 287 |
container_issue | 2 |
container_start_page | 283 |
container_title | Environmental health perspectives |
container_volume | 117 |
creator | White, Ronald H. Cote, Ila Zeise, Lauren Fox, Mary Dominici, Francesca Burke, Thomas A. White, Paul D. Hattis, Dale B. Samet, Jonathan M. |
description | Low-dose extrapolation model selection for evaluating the health effects of environmental pollutants is a key component of the risk assessment process. At a workshop held in Baltimore, Maryland, on 23-24 April 2007, sponsored by U.S. Environmental Protection Agency and Johns Hopkins Risk Sciences and Public Policy Institute, a multidisciplinary group of experts reviewed the state of the science regarding low-dose extrapolation modeling and its application in environmental health risk assessments. Participants identified discussion topics based on a literature review, which included examples for which human responses to ambient exposures have been extensively characterized for cancer and/or noncancer outcomes. Topics included the need for formalized approaches and criteria to assess the evidence for mode of action (MOA), the use of human versus animal data, the use of MOA information in biologically based models, and the implications of interindividual variability, background disease processes, and background exposures in threshold versus nonthreshold model choice. Participants recommended approaches that differ from current practice for extrapolating high-dose animal data to low-dose human exposures, including categorical approaches for integrating information on MOA, statistical approaches such as model averaging, and inference-based models that explicitly consider uncertainty and interindividual variability. |
doi_str_mv | 10.1289/ehp.11502 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2649232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A194529425</galeid><jstor_id>25434937</jstor_id><sourcerecordid>A194529425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-59dc94ec68c9b09e853f10e8afba7beb59dba252d241b7601ba84392c70d7e2f3</originalsourceid><addsrcrecordid>eNqN009v0zAUAPAIgVgZHPgAIIvDEIcU20mceAekahRWqdKklj9Hy3FemmypHWxnjG_Ax8Zdq7GiCk05WMn7-cX284uilwSPCS34e2j6MSEZpo-iEckyGnNO08fRCGNOYpaz7Ch65twlxpgUjD2NjginOS4wHkW_l156iE0d-wbipWpBK0Dfjb1yjenRAnpj_SmaOTeAQ1JXaNL31kjVhNdWo7n5GX80Dk4Ddb3RDtD0xlvZm0761mhUG4um-rq1Rq9Be9mhc5Cdb9CidVdo4hw4twk8j57UsnPwYjceR18_Tb-cncfzi8-zs8k8VoxTH2e8UjwFxQrFS8yhyJKaYChkXcq8hDLES0kzWtGUlDnDpJRFmnCqclzlQOvkOPqwzdsP5RoqFX5tZSd6266l_SWMbMV-RLeNWJlrQVnKaUJDgre7BNb8CIfixbp1CrpOajCDE3mapGFVPA3y5L-SkqTgjD0A4oQlRZoH-OYfeGkGq8N5CUopo4SSLKB4i1ayA9Hq2oR9qBVoCNsxGuo2fJ4QnmaUp3Tjxwd8eCpYt-rghHd7E4LxcONXcnBOzJaLh9uLb_v25J5tbq-JM92wuUfuYFJljXMW6rvyESw2HSFCR4jbjgj29f16_5W7Fgjg1RZcOm_sXZxmoY48yZM_cB8PCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222621215</pqid></control><display><type>article</type><title>State-of-the-Science Workshop Report: Issues and Approaches in Low-Dose: Response Extrapolation for Environmental Health Risk Assessment</title><source>GreenFILE</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed</source><creator>White, Ronald H. ; Cote, Ila ; Zeise, Lauren ; Fox, Mary ; Dominici, Francesca ; Burke, Thomas A. ; White, Paul D. ; Hattis, Dale B. ; Samet, Jonathan M.</creator><creatorcontrib>White, Ronald H. ; Cote, Ila ; Zeise, Lauren ; Fox, Mary ; Dominici, Francesca ; Burke, Thomas A. ; White, Paul D. ; Hattis, Dale B. ; Samet, Jonathan M.</creatorcontrib><description>Low-dose extrapolation model selection for evaluating the health effects of environmental pollutants is a key component of the risk assessment process. At a workshop held in Baltimore, Maryland, on 23-24 April 2007, sponsored by U.S. Environmental Protection Agency and Johns Hopkins Risk Sciences and Public Policy Institute, a multidisciplinary group of experts reviewed the state of the science regarding low-dose extrapolation modeling and its application in environmental health risk assessments. Participants identified discussion topics based on a literature review, which included examples for which human responses to ambient exposures have been extensively characterized for cancer and/or noncancer outcomes. Topics included the need for formalized approaches and criteria to assess the evidence for mode of action (MOA), the use of human versus animal data, the use of MOA information in biologically based models, and the implications of interindividual variability, background disease processes, and background exposures in threshold versus nonthreshold model choice. Participants recommended approaches that differ from current practice for extrapolating high-dose animal data to low-dose human exposures, including categorical approaches for integrating information on MOA, statistical approaches such as model averaging, and inference-based models that explicitly consider uncertainty and interindividual variability.</description><identifier>ISSN: 0091-6765</identifier><identifier>EISSN: 1552-9924</identifier><identifier>DOI: 10.1289/ehp.11502</identifier><identifier>PMID: 19270800</identifier><language>eng</language><publisher>United States: National Institute of Environmental Health Sciences. National Institutes of Health. Department of Health, Education and Welfare</publisher><subject>Animal models ; Animals ; Cancer ; Copyrights ; Criteria ; Disease models ; Dosage ; Dose response relationship ; Dose-Response Relationship, Drug ; Ecological risk assessment ; Environmental agencies ; Environmental aspects ; Environmental Exposure - adverse effects ; Environmental Pollutants - adverse effects ; Environmental risk assessment ; Epidemiology ; Exposure ; Extrapolation ; Health ; Health risk assessment ; Human ; Humans ; Maryland ; Mathematical extrapolation ; Mode of action ; Multidisciplinary ; Neoplasms ; Pollutants ; Public policy ; Risk ; Risk assessment ; Risk Assessment - methods ; Thresholds ; Uncertainty ; United States ; United States Environmental Protection Agency ; Workshops</subject><ispartof>Environmental health perspectives, 2009-02, Vol.117 (2), p.283-287</ispartof><rights>COPYRIGHT 2009 National Institute of Environmental Health Sciences</rights><rights>Copyright National Institute of Environmental Health Sciences Feb 2009</rights><rights>2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-59dc94ec68c9b09e853f10e8afba7beb59dba252d241b7601ba84392c70d7e2f3</citedby><cites>FETCH-LOGICAL-c692t-59dc94ec68c9b09e853f10e8afba7beb59dba252d241b7601ba84392c70d7e2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25434937$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25434937$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19270800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>White, Ronald H.</creatorcontrib><creatorcontrib>Cote, Ila</creatorcontrib><creatorcontrib>Zeise, Lauren</creatorcontrib><creatorcontrib>Fox, Mary</creatorcontrib><creatorcontrib>Dominici, Francesca</creatorcontrib><creatorcontrib>Burke, Thomas A.</creatorcontrib><creatorcontrib>White, Paul D.</creatorcontrib><creatorcontrib>Hattis, Dale B.</creatorcontrib><creatorcontrib>Samet, Jonathan M.</creatorcontrib><title>State-of-the-Science Workshop Report: Issues and Approaches in Low-Dose: Response Extrapolation for Environmental Health Risk Assessment</title><title>Environmental health perspectives</title><addtitle>Environ Health Perspect</addtitle><description>Low-dose extrapolation model selection for evaluating the health effects of environmental pollutants is a key component of the risk assessment process. At a workshop held in Baltimore, Maryland, on 23-24 April 2007, sponsored by U.S. Environmental Protection Agency and Johns Hopkins Risk Sciences and Public Policy Institute, a multidisciplinary group of experts reviewed the state of the science regarding low-dose extrapolation modeling and its application in environmental health risk assessments. Participants identified discussion topics based on a literature review, which included examples for which human responses to ambient exposures have been extensively characterized for cancer and/or noncancer outcomes. Topics included the need for formalized approaches and criteria to assess the evidence for mode of action (MOA), the use of human versus animal data, the use of MOA information in biologically based models, and the implications of interindividual variability, background disease processes, and background exposures in threshold versus nonthreshold model choice. Participants recommended approaches that differ from current practice for extrapolating high-dose animal data to low-dose human exposures, including categorical approaches for integrating information on MOA, statistical approaches such as model averaging, and inference-based models that explicitly consider uncertainty and interindividual variability.</description><subject>Animal models</subject><subject>Animals</subject><subject>Cancer</subject><subject>Copyrights</subject><subject>Criteria</subject><subject>Disease models</subject><subject>Dosage</subject><subject>Dose response relationship</subject><subject>Dose-Response Relationship, Drug</subject><subject>Ecological risk assessment</subject><subject>Environmental agencies</subject><subject>Environmental aspects</subject><subject>Environmental Exposure - adverse effects</subject><subject>Environmental Pollutants - adverse effects</subject><subject>Environmental risk assessment</subject><subject>Epidemiology</subject><subject>Exposure</subject><subject>Extrapolation</subject><subject>Health</subject><subject>Health risk assessment</subject><subject>Human</subject><subject>Humans</subject><subject>Maryland</subject><subject>Mathematical extrapolation</subject><subject>Mode of action</subject><subject>Multidisciplinary</subject><subject>Neoplasms</subject><subject>Pollutants</subject><subject>Public policy</subject><subject>Risk</subject><subject>Risk assessment</subject><subject>Risk Assessment - methods</subject><subject>Thresholds</subject><subject>Uncertainty</subject><subject>United States</subject><subject>United States Environmental Protection Agency</subject><subject>Workshops</subject><issn>0091-6765</issn><issn>1552-9924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqN009v0zAUAPAIgVgZHPgAIIvDEIcU20mceAekahRWqdKklj9Hy3FemmypHWxnjG_Ax8Zdq7GiCk05WMn7-cX284uilwSPCS34e2j6MSEZpo-iEckyGnNO08fRCGNOYpaz7Ch65twlxpgUjD2NjginOS4wHkW_l156iE0d-wbipWpBK0Dfjb1yjenRAnpj_SmaOTeAQ1JXaNL31kjVhNdWo7n5GX80Dk4Ddb3RDtD0xlvZm0761mhUG4um-rq1Rq9Be9mhc5Cdb9CidVdo4hw4twk8j57UsnPwYjceR18_Tb-cncfzi8-zs8k8VoxTH2e8UjwFxQrFS8yhyJKaYChkXcq8hDLES0kzWtGUlDnDpJRFmnCqclzlQOvkOPqwzdsP5RoqFX5tZSd6266l_SWMbMV-RLeNWJlrQVnKaUJDgre7BNb8CIfixbp1CrpOajCDE3mapGFVPA3y5L-SkqTgjD0A4oQlRZoH-OYfeGkGq8N5CUopo4SSLKB4i1ayA9Hq2oR9qBVoCNsxGuo2fJ4QnmaUp3Tjxwd8eCpYt-rghHd7E4LxcONXcnBOzJaLh9uLb_v25J5tbq-JM92wuUfuYFJljXMW6rvyESw2HSFCR4jbjgj29f16_5W7Fgjg1RZcOm_sXZxmoY48yZM_cB8PCw</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>White, Ronald H.</creator><creator>Cote, Ila</creator><creator>Zeise, Lauren</creator><creator>Fox, Mary</creator><creator>Dominici, Francesca</creator><creator>Burke, Thomas A.</creator><creator>White, Paul D.</creator><creator>Hattis, Dale B.</creator><creator>Samet, Jonathan M.</creator><general>National Institute of Environmental Health Sciences. National Institutes of Health. Department of Health, Education and Welfare</general><general>National Institute of Environmental Health Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>4T-</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>7ST</scope><scope>7T2</scope><scope>7TV</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope><scope>SOI</scope><scope>7SU</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>5PM</scope></search><sort><creationdate>20090201</creationdate><title>State-of-the-Science Workshop Report: Issues and Approaches in Low-Dose: Response Extrapolation for Environmental Health Risk Assessment</title><author>White, Ronald H. ; Cote, Ila ; Zeise, Lauren ; Fox, Mary ; Dominici, Francesca ; Burke, Thomas A. ; White, Paul D. ; Hattis, Dale B. ; Samet, Jonathan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-59dc94ec68c9b09e853f10e8afba7beb59dba252d241b7601ba84392c70d7e2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Cancer</topic><topic>Copyrights</topic><topic>Criteria</topic><topic>Disease models</topic><topic>Dosage</topic><topic>Dose response relationship</topic><topic>Dose-Response Relationship, Drug</topic><topic>Ecological risk assessment</topic><topic>Environmental agencies</topic><topic>Environmental aspects</topic><topic>Environmental Exposure - adverse effects</topic><topic>Environmental Pollutants - adverse effects</topic><topic>Environmental risk assessment</topic><topic>Epidemiology</topic><topic>Exposure</topic><topic>Extrapolation</topic><topic>Health</topic><topic>Health risk assessment</topic><topic>Human</topic><topic>Humans</topic><topic>Maryland</topic><topic>Mathematical extrapolation</topic><topic>Mode of action</topic><topic>Multidisciplinary</topic><topic>Neoplasms</topic><topic>Pollutants</topic><topic>Public policy</topic><topic>Risk</topic><topic>Risk assessment</topic><topic>Risk Assessment - methods</topic><topic>Thresholds</topic><topic>Uncertainty</topic><topic>United States</topic><topic>United States Environmental Protection Agency</topic><topic>Workshops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>White, Ronald H.</creatorcontrib><creatorcontrib>Cote, Ila</creatorcontrib><creatorcontrib>Zeise, Lauren</creatorcontrib><creatorcontrib>Fox, Mary</creatorcontrib><creatorcontrib>Dominici, Francesca</creatorcontrib><creatorcontrib>Burke, Thomas A.</creatorcontrib><creatorcontrib>White, Paul D.</creatorcontrib><creatorcontrib>Hattis, Dale B.</creatorcontrib><creatorcontrib>Samet, Jonathan M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Nursing & Allied Health Database</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Pollution Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental health perspectives</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>White, Ronald H.</au><au>Cote, Ila</au><au>Zeise, Lauren</au><au>Fox, Mary</au><au>Dominici, Francesca</au><au>Burke, Thomas A.</au><au>White, Paul D.</au><au>Hattis, Dale B.</au><au>Samet, Jonathan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State-of-the-Science Workshop Report: Issues and Approaches in Low-Dose: Response Extrapolation for Environmental Health Risk Assessment</atitle><jtitle>Environmental health perspectives</jtitle><addtitle>Environ Health Perspect</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>117</volume><issue>2</issue><spage>283</spage><epage>287</epage><pages>283-287</pages><issn>0091-6765</issn><eissn>1552-9924</eissn><abstract>Low-dose extrapolation model selection for evaluating the health effects of environmental pollutants is a key component of the risk assessment process. At a workshop held in Baltimore, Maryland, on 23-24 April 2007, sponsored by U.S. Environmental Protection Agency and Johns Hopkins Risk Sciences and Public Policy Institute, a multidisciplinary group of experts reviewed the state of the science regarding low-dose extrapolation modeling and its application in environmental health risk assessments. Participants identified discussion topics based on a literature review, which included examples for which human responses to ambient exposures have been extensively characterized for cancer and/or noncancer outcomes. Topics included the need for formalized approaches and criteria to assess the evidence for mode of action (MOA), the use of human versus animal data, the use of MOA information in biologically based models, and the implications of interindividual variability, background disease processes, and background exposures in threshold versus nonthreshold model choice. Participants recommended approaches that differ from current practice for extrapolating high-dose animal data to low-dose human exposures, including categorical approaches for integrating information on MOA, statistical approaches such as model averaging, and inference-based models that explicitly consider uncertainty and interindividual variability.</abstract><cop>United States</cop><pub>National Institute of Environmental Health Sciences. National Institutes of Health. Department of Health, Education and Welfare</pub><pmid>19270800</pmid><doi>10.1289/ehp.11502</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-6765 |
ispartof | Environmental health perspectives, 2009-02, Vol.117 (2), p.283-287 |
issn | 0091-6765 1552-9924 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2649232 |
source | GreenFILE; JSTOR Archival Journals and Primary Sources Collection; PubMed |
subjects | Animal models Animals Cancer Copyrights Criteria Disease models Dosage Dose response relationship Dose-Response Relationship, Drug Ecological risk assessment Environmental agencies Environmental aspects Environmental Exposure - adverse effects Environmental Pollutants - adverse effects Environmental risk assessment Epidemiology Exposure Extrapolation Health Health risk assessment Human Humans Maryland Mathematical extrapolation Mode of action Multidisciplinary Neoplasms Pollutants Public policy Risk Risk assessment Risk Assessment - methods Thresholds Uncertainty United States United States Environmental Protection Agency Workshops |
title | State-of-the-Science Workshop Report: Issues and Approaches in Low-Dose: Response Extrapolation for Environmental Health Risk Assessment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A01%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State-of-the-Science%20Workshop%20Report:%20Issues%20and%20Approaches%20in%20Low-Dose:%20Response%20Extrapolation%20for%20Environmental%20Health%20Risk%20Assessment&rft.jtitle=Environmental%20health%20perspectives&rft.au=White,%20Ronald%20H.&rft.date=2009-02-01&rft.volume=117&rft.issue=2&rft.spage=283&rft.epage=287&rft.pages=283-287&rft.issn=0091-6765&rft.eissn=1552-9924&rft_id=info:doi/10.1289/ehp.11502&rft_dat=%3Cgale_pubme%3EA194529425%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-59dc94ec68c9b09e853f10e8afba7beb59dba252d241b7601ba84392c70d7e2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=222621215&rft_id=info:pmid/19270800&rft_galeid=A194529425&rft_jstor_id=25434937&rfr_iscdi=true |