Loading…

State-of-the-Science Workshop Report: Issues and Approaches in Low-Dose: Response Extrapolation for Environmental Health Risk Assessment

Low-dose extrapolation model selection for evaluating the health effects of environmental pollutants is a key component of the risk assessment process. At a workshop held in Baltimore, Maryland, on 23-24 April 2007, sponsored by U.S. Environmental Protection Agency and Johns Hopkins Risk Sciences an...

Full description

Saved in:
Bibliographic Details
Published in:Environmental health perspectives 2009-02, Vol.117 (2), p.283-287
Main Authors: White, Ronald H., Cote, Ila, Zeise, Lauren, Fox, Mary, Dominici, Francesca, Burke, Thomas A., White, Paul D., Hattis, Dale B., Samet, Jonathan M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-59dc94ec68c9b09e853f10e8afba7beb59dba252d241b7601ba84392c70d7e2f3
cites cdi_FETCH-LOGICAL-c692t-59dc94ec68c9b09e853f10e8afba7beb59dba252d241b7601ba84392c70d7e2f3
container_end_page 287
container_issue 2
container_start_page 283
container_title Environmental health perspectives
container_volume 117
creator White, Ronald H.
Cote, Ila
Zeise, Lauren
Fox, Mary
Dominici, Francesca
Burke, Thomas A.
White, Paul D.
Hattis, Dale B.
Samet, Jonathan M.
description Low-dose extrapolation model selection for evaluating the health effects of environmental pollutants is a key component of the risk assessment process. At a workshop held in Baltimore, Maryland, on 23-24 April 2007, sponsored by U.S. Environmental Protection Agency and Johns Hopkins Risk Sciences and Public Policy Institute, a multidisciplinary group of experts reviewed the state of the science regarding low-dose extrapolation modeling and its application in environmental health risk assessments. Participants identified discussion topics based on a literature review, which included examples for which human responses to ambient exposures have been extensively characterized for cancer and/or noncancer outcomes. Topics included the need for formalized approaches and criteria to assess the evidence for mode of action (MOA), the use of human versus animal data, the use of MOA information in biologically based models, and the implications of interindividual variability, background disease processes, and background exposures in threshold versus nonthreshold model choice. Participants recommended approaches that differ from current practice for extrapolating high-dose animal data to low-dose human exposures, including categorical approaches for integrating information on MOA, statistical approaches such as model averaging, and inference-based models that explicitly consider uncertainty and interindividual variability.
doi_str_mv 10.1289/ehp.11502
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2649232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A194529425</galeid><jstor_id>25434937</jstor_id><sourcerecordid>A194529425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-59dc94ec68c9b09e853f10e8afba7beb59dba252d241b7601ba84392c70d7e2f3</originalsourceid><addsrcrecordid>eNqN009v0zAUAPAIgVgZHPgAIIvDEIcU20mceAekahRWqdKklj9Hy3FemmypHWxnjG_Ax8Zdq7GiCk05WMn7-cX284uilwSPCS34e2j6MSEZpo-iEckyGnNO08fRCGNOYpaz7Ch65twlxpgUjD2NjginOS4wHkW_l156iE0d-wbipWpBK0Dfjb1yjenRAnpj_SmaOTeAQ1JXaNL31kjVhNdWo7n5GX80Dk4Ddb3RDtD0xlvZm0761mhUG4um-rq1Rq9Be9mhc5Cdb9CidVdo4hw4twk8j57UsnPwYjceR18_Tb-cncfzi8-zs8k8VoxTH2e8UjwFxQrFS8yhyJKaYChkXcq8hDLES0kzWtGUlDnDpJRFmnCqclzlQOvkOPqwzdsP5RoqFX5tZSd6266l_SWMbMV-RLeNWJlrQVnKaUJDgre7BNb8CIfixbp1CrpOajCDE3mapGFVPA3y5L-SkqTgjD0A4oQlRZoH-OYfeGkGq8N5CUopo4SSLKB4i1ayA9Hq2oR9qBVoCNsxGuo2fJ4QnmaUp3Tjxwd8eCpYt-rghHd7E4LxcONXcnBOzJaLh9uLb_v25J5tbq-JM92wuUfuYFJljXMW6rvyESw2HSFCR4jbjgj29f16_5W7Fgjg1RZcOm_sXZxmoY48yZM_cB8PCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222621215</pqid></control><display><type>article</type><title>State-of-the-Science Workshop Report: Issues and Approaches in Low-Dose: Response Extrapolation for Environmental Health Risk Assessment</title><source>GreenFILE</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed</source><creator>White, Ronald H. ; Cote, Ila ; Zeise, Lauren ; Fox, Mary ; Dominici, Francesca ; Burke, Thomas A. ; White, Paul D. ; Hattis, Dale B. ; Samet, Jonathan M.</creator><creatorcontrib>White, Ronald H. ; Cote, Ila ; Zeise, Lauren ; Fox, Mary ; Dominici, Francesca ; Burke, Thomas A. ; White, Paul D. ; Hattis, Dale B. ; Samet, Jonathan M.</creatorcontrib><description>Low-dose extrapolation model selection for evaluating the health effects of environmental pollutants is a key component of the risk assessment process. At a workshop held in Baltimore, Maryland, on 23-24 April 2007, sponsored by U.S. Environmental Protection Agency and Johns Hopkins Risk Sciences and Public Policy Institute, a multidisciplinary group of experts reviewed the state of the science regarding low-dose extrapolation modeling and its application in environmental health risk assessments. Participants identified discussion topics based on a literature review, which included examples for which human responses to ambient exposures have been extensively characterized for cancer and/or noncancer outcomes. Topics included the need for formalized approaches and criteria to assess the evidence for mode of action (MOA), the use of human versus animal data, the use of MOA information in biologically based models, and the implications of interindividual variability, background disease processes, and background exposures in threshold versus nonthreshold model choice. Participants recommended approaches that differ from current practice for extrapolating high-dose animal data to low-dose human exposures, including categorical approaches for integrating information on MOA, statistical approaches such as model averaging, and inference-based models that explicitly consider uncertainty and interindividual variability.</description><identifier>ISSN: 0091-6765</identifier><identifier>EISSN: 1552-9924</identifier><identifier>DOI: 10.1289/ehp.11502</identifier><identifier>PMID: 19270800</identifier><language>eng</language><publisher>United States: National Institute of Environmental Health Sciences. National Institutes of Health. Department of Health, Education and Welfare</publisher><subject>Animal models ; Animals ; Cancer ; Copyrights ; Criteria ; Disease models ; Dosage ; Dose response relationship ; Dose-Response Relationship, Drug ; Ecological risk assessment ; Environmental agencies ; Environmental aspects ; Environmental Exposure - adverse effects ; Environmental Pollutants - adverse effects ; Environmental risk assessment ; Epidemiology ; Exposure ; Extrapolation ; Health ; Health risk assessment ; Human ; Humans ; Maryland ; Mathematical extrapolation ; Mode of action ; Multidisciplinary ; Neoplasms ; Pollutants ; Public policy ; Risk ; Risk assessment ; Risk Assessment - methods ; Thresholds ; Uncertainty ; United States ; United States Environmental Protection Agency ; Workshops</subject><ispartof>Environmental health perspectives, 2009-02, Vol.117 (2), p.283-287</ispartof><rights>COPYRIGHT 2009 National Institute of Environmental Health Sciences</rights><rights>Copyright National Institute of Environmental Health Sciences Feb 2009</rights><rights>2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-59dc94ec68c9b09e853f10e8afba7beb59dba252d241b7601ba84392c70d7e2f3</citedby><cites>FETCH-LOGICAL-c692t-59dc94ec68c9b09e853f10e8afba7beb59dba252d241b7601ba84392c70d7e2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25434937$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25434937$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19270800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>White, Ronald H.</creatorcontrib><creatorcontrib>Cote, Ila</creatorcontrib><creatorcontrib>Zeise, Lauren</creatorcontrib><creatorcontrib>Fox, Mary</creatorcontrib><creatorcontrib>Dominici, Francesca</creatorcontrib><creatorcontrib>Burke, Thomas A.</creatorcontrib><creatorcontrib>White, Paul D.</creatorcontrib><creatorcontrib>Hattis, Dale B.</creatorcontrib><creatorcontrib>Samet, Jonathan M.</creatorcontrib><title>State-of-the-Science Workshop Report: Issues and Approaches in Low-Dose: Response Extrapolation for Environmental Health Risk Assessment</title><title>Environmental health perspectives</title><addtitle>Environ Health Perspect</addtitle><description>Low-dose extrapolation model selection for evaluating the health effects of environmental pollutants is a key component of the risk assessment process. At a workshop held in Baltimore, Maryland, on 23-24 April 2007, sponsored by U.S. Environmental Protection Agency and Johns Hopkins Risk Sciences and Public Policy Institute, a multidisciplinary group of experts reviewed the state of the science regarding low-dose extrapolation modeling and its application in environmental health risk assessments. Participants identified discussion topics based on a literature review, which included examples for which human responses to ambient exposures have been extensively characterized for cancer and/or noncancer outcomes. Topics included the need for formalized approaches and criteria to assess the evidence for mode of action (MOA), the use of human versus animal data, the use of MOA information in biologically based models, and the implications of interindividual variability, background disease processes, and background exposures in threshold versus nonthreshold model choice. Participants recommended approaches that differ from current practice for extrapolating high-dose animal data to low-dose human exposures, including categorical approaches for integrating information on MOA, statistical approaches such as model averaging, and inference-based models that explicitly consider uncertainty and interindividual variability.</description><subject>Animal models</subject><subject>Animals</subject><subject>Cancer</subject><subject>Copyrights</subject><subject>Criteria</subject><subject>Disease models</subject><subject>Dosage</subject><subject>Dose response relationship</subject><subject>Dose-Response Relationship, Drug</subject><subject>Ecological risk assessment</subject><subject>Environmental agencies</subject><subject>Environmental aspects</subject><subject>Environmental Exposure - adverse effects</subject><subject>Environmental Pollutants - adverse effects</subject><subject>Environmental risk assessment</subject><subject>Epidemiology</subject><subject>Exposure</subject><subject>Extrapolation</subject><subject>Health</subject><subject>Health risk assessment</subject><subject>Human</subject><subject>Humans</subject><subject>Maryland</subject><subject>Mathematical extrapolation</subject><subject>Mode of action</subject><subject>Multidisciplinary</subject><subject>Neoplasms</subject><subject>Pollutants</subject><subject>Public policy</subject><subject>Risk</subject><subject>Risk assessment</subject><subject>Risk Assessment - methods</subject><subject>Thresholds</subject><subject>Uncertainty</subject><subject>United States</subject><subject>United States Environmental Protection Agency</subject><subject>Workshops</subject><issn>0091-6765</issn><issn>1552-9924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqN009v0zAUAPAIgVgZHPgAIIvDEIcU20mceAekahRWqdKklj9Hy3FemmypHWxnjG_Ax8Zdq7GiCk05WMn7-cX284uilwSPCS34e2j6MSEZpo-iEckyGnNO08fRCGNOYpaz7Ch65twlxpgUjD2NjginOS4wHkW_l156iE0d-wbipWpBK0Dfjb1yjenRAnpj_SmaOTeAQ1JXaNL31kjVhNdWo7n5GX80Dk4Ddb3RDtD0xlvZm0761mhUG4um-rq1Rq9Be9mhc5Cdb9CidVdo4hw4twk8j57UsnPwYjceR18_Tb-cncfzi8-zs8k8VoxTH2e8UjwFxQrFS8yhyJKaYChkXcq8hDLES0kzWtGUlDnDpJRFmnCqclzlQOvkOPqwzdsP5RoqFX5tZSd6266l_SWMbMV-RLeNWJlrQVnKaUJDgre7BNb8CIfixbp1CrpOajCDE3mapGFVPA3y5L-SkqTgjD0A4oQlRZoH-OYfeGkGq8N5CUopo4SSLKB4i1ayA9Hq2oR9qBVoCNsxGuo2fJ4QnmaUp3Tjxwd8eCpYt-rghHd7E4LxcONXcnBOzJaLh9uLb_v25J5tbq-JM92wuUfuYFJljXMW6rvyESw2HSFCR4jbjgj29f16_5W7Fgjg1RZcOm_sXZxmoY48yZM_cB8PCw</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>White, Ronald H.</creator><creator>Cote, Ila</creator><creator>Zeise, Lauren</creator><creator>Fox, Mary</creator><creator>Dominici, Francesca</creator><creator>Burke, Thomas A.</creator><creator>White, Paul D.</creator><creator>Hattis, Dale B.</creator><creator>Samet, Jonathan M.</creator><general>National Institute of Environmental Health Sciences. National Institutes of Health. Department of Health, Education and Welfare</general><general>National Institute of Environmental Health Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>4T-</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>7ST</scope><scope>7T2</scope><scope>7TV</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope><scope>SOI</scope><scope>7SU</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>5PM</scope></search><sort><creationdate>20090201</creationdate><title>State-of-the-Science Workshop Report: Issues and Approaches in Low-Dose: Response Extrapolation for Environmental Health Risk Assessment</title><author>White, Ronald H. ; Cote, Ila ; Zeise, Lauren ; Fox, Mary ; Dominici, Francesca ; Burke, Thomas A. ; White, Paul D. ; Hattis, Dale B. ; Samet, Jonathan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-59dc94ec68c9b09e853f10e8afba7beb59dba252d241b7601ba84392c70d7e2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Cancer</topic><topic>Copyrights</topic><topic>Criteria</topic><topic>Disease models</topic><topic>Dosage</topic><topic>Dose response relationship</topic><topic>Dose-Response Relationship, Drug</topic><topic>Ecological risk assessment</topic><topic>Environmental agencies</topic><topic>Environmental aspects</topic><topic>Environmental Exposure - adverse effects</topic><topic>Environmental Pollutants - adverse effects</topic><topic>Environmental risk assessment</topic><topic>Epidemiology</topic><topic>Exposure</topic><topic>Extrapolation</topic><topic>Health</topic><topic>Health risk assessment</topic><topic>Human</topic><topic>Humans</topic><topic>Maryland</topic><topic>Mathematical extrapolation</topic><topic>Mode of action</topic><topic>Multidisciplinary</topic><topic>Neoplasms</topic><topic>Pollutants</topic><topic>Public policy</topic><topic>Risk</topic><topic>Risk assessment</topic><topic>Risk Assessment - methods</topic><topic>Thresholds</topic><topic>Uncertainty</topic><topic>United States</topic><topic>United States Environmental Protection Agency</topic><topic>Workshops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>White, Ronald H.</creatorcontrib><creatorcontrib>Cote, Ila</creatorcontrib><creatorcontrib>Zeise, Lauren</creatorcontrib><creatorcontrib>Fox, Mary</creatorcontrib><creatorcontrib>Dominici, Francesca</creatorcontrib><creatorcontrib>Burke, Thomas A.</creatorcontrib><creatorcontrib>White, Paul D.</creatorcontrib><creatorcontrib>Hattis, Dale B.</creatorcontrib><creatorcontrib>Samet, Jonathan M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Nursing &amp; Allied Health Database</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Pollution Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental health perspectives</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>White, Ronald H.</au><au>Cote, Ila</au><au>Zeise, Lauren</au><au>Fox, Mary</au><au>Dominici, Francesca</au><au>Burke, Thomas A.</au><au>White, Paul D.</au><au>Hattis, Dale B.</au><au>Samet, Jonathan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State-of-the-Science Workshop Report: Issues and Approaches in Low-Dose: Response Extrapolation for Environmental Health Risk Assessment</atitle><jtitle>Environmental health perspectives</jtitle><addtitle>Environ Health Perspect</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>117</volume><issue>2</issue><spage>283</spage><epage>287</epage><pages>283-287</pages><issn>0091-6765</issn><eissn>1552-9924</eissn><abstract>Low-dose extrapolation model selection for evaluating the health effects of environmental pollutants is a key component of the risk assessment process. At a workshop held in Baltimore, Maryland, on 23-24 April 2007, sponsored by U.S. Environmental Protection Agency and Johns Hopkins Risk Sciences and Public Policy Institute, a multidisciplinary group of experts reviewed the state of the science regarding low-dose extrapolation modeling and its application in environmental health risk assessments. Participants identified discussion topics based on a literature review, which included examples for which human responses to ambient exposures have been extensively characterized for cancer and/or noncancer outcomes. Topics included the need for formalized approaches and criteria to assess the evidence for mode of action (MOA), the use of human versus animal data, the use of MOA information in biologically based models, and the implications of interindividual variability, background disease processes, and background exposures in threshold versus nonthreshold model choice. Participants recommended approaches that differ from current practice for extrapolating high-dose animal data to low-dose human exposures, including categorical approaches for integrating information on MOA, statistical approaches such as model averaging, and inference-based models that explicitly consider uncertainty and interindividual variability.</abstract><cop>United States</cop><pub>National Institute of Environmental Health Sciences. National Institutes of Health. Department of Health, Education and Welfare</pub><pmid>19270800</pmid><doi>10.1289/ehp.11502</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-6765
ispartof Environmental health perspectives, 2009-02, Vol.117 (2), p.283-287
issn 0091-6765
1552-9924
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2649232
source GreenFILE; JSTOR Archival Journals and Primary Sources Collection; PubMed
subjects Animal models
Animals
Cancer
Copyrights
Criteria
Disease models
Dosage
Dose response relationship
Dose-Response Relationship, Drug
Ecological risk assessment
Environmental agencies
Environmental aspects
Environmental Exposure - adverse effects
Environmental Pollutants - adverse effects
Environmental risk assessment
Epidemiology
Exposure
Extrapolation
Health
Health risk assessment
Human
Humans
Maryland
Mathematical extrapolation
Mode of action
Multidisciplinary
Neoplasms
Pollutants
Public policy
Risk
Risk assessment
Risk Assessment - methods
Thresholds
Uncertainty
United States
United States Environmental Protection Agency
Workshops
title State-of-the-Science Workshop Report: Issues and Approaches in Low-Dose: Response Extrapolation for Environmental Health Risk Assessment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A01%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State-of-the-Science%20Workshop%20Report:%20Issues%20and%20Approaches%20in%20Low-Dose:%20Response%20Extrapolation%20for%20Environmental%20Health%20Risk%20Assessment&rft.jtitle=Environmental%20health%20perspectives&rft.au=White,%20Ronald%20H.&rft.date=2009-02-01&rft.volume=117&rft.issue=2&rft.spage=283&rft.epage=287&rft.pages=283-287&rft.issn=0091-6765&rft.eissn=1552-9924&rft_id=info:doi/10.1289/ehp.11502&rft_dat=%3Cgale_pubme%3EA194529425%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-59dc94ec68c9b09e853f10e8afba7beb59dba252d241b7601ba84392c70d7e2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=222621215&rft_id=info:pmid/19270800&rft_galeid=A194529425&rft_jstor_id=25434937&rfr_iscdi=true