Loading…

Functional Interactions between Distinct Sodium Channel Cytoplasmic Domains through the Action of Calmodulin

Sodium channels are fundamental signaling molecules in excitable cells, and are molecular targets for local anesthetic agents and intracellular free Ca2+ ([Ca2+]i). Two regions of NaV1.5 have been identified previously as [Ca2+]i-sensitive modulators of channel inactivation. These include a C-termin...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2009-03, Vol.284 (13), p.8846-8854
Main Authors: Potet, Franck, Chagot, Benjamin, Anghelescu, Mircea, Viswanathan, Prakash C., Stepanovic, Svetlana Z., Kupershmidt, Sabina, Chazin, Walter J., Balser, Jeffrey R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c620t-d27e202c7a9eb9256b4682ac770fa4c456bb43bd7c158227e04a30cbb82eb39e3
cites cdi_FETCH-LOGICAL-c620t-d27e202c7a9eb9256b4682ac770fa4c456bb43bd7c158227e04a30cbb82eb39e3
container_end_page 8854
container_issue 13
container_start_page 8846
container_title The Journal of biological chemistry
container_volume 284
creator Potet, Franck
Chagot, Benjamin
Anghelescu, Mircea
Viswanathan, Prakash C.
Stepanovic, Svetlana Z.
Kupershmidt, Sabina
Chazin, Walter J.
Balser, Jeffrey R.
description Sodium channels are fundamental signaling molecules in excitable cells, and are molecular targets for local anesthetic agents and intracellular free Ca2+ ([Ca2+]i). Two regions of NaV1.5 have been identified previously as [Ca2+]i-sensitive modulators of channel inactivation. These include a C-terminal IQ motif that binds calmodulin (CaM) in different modes depending on Ca2+ levels, and an immediately adjacent C-terminal EF-hand domain that directly binds Ca2+. Here we show that a mutation of the IQ domain (A1924T; Brugada Syndrome) that reduces CaM binding stabilizes NaV1.5 inactivation, similarly and more extensively than even reducing [Ca2+]i. Because the DIII-DIV linker is an essential structure in NaV1.5 inactivation, we evaluated this domain for a potential CaM binding interaction. We identified a novel CaM binding site within the linker, validated its interaction with CaM by NMR spectroscopy, and revealed its micromolar affinity by isothermal titration calorimetry. Mutation of three consecutive hydrophobic residues (Phe1520-Ile1521-Phe1522) to alanines in this CaM-binding domain recapitulated the electrophysiology phenotype observed with mutation of the C-terminal IQ domain: NaV1.5 inactivation was stabilized; moreover, mutations of either CaM-binding domain abolish the well described stabilization of inactivation by lidocaine. The direct physical interaction of CaM with the C-terminal IQ domain and the DIII-DIV linker, combined with the similarity in phenotypes when CaM-binding sites in either domain are mutated, suggests these cytoplasmic structures could be functionally coupled through the action of CaM. These findings have bearing upon Na+ channel function in genetically altered channels and under pathophysiologic conditions where [Ca2+]i impacts cardiac conduction.
doi_str_mv 10.1074/jbc.M806871200
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2659242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820324303</els_id><sourcerecordid>21071963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-d27e202c7a9eb9256b4682ac770fa4c456bb43bd7c158227e04a30cbb82eb39e3</originalsourceid><addsrcrecordid>eNp1kc1v1DAQxSMEokvhyhEiISH1kMUf2cS-IK3SllZaxKFU4mbZzmTjyrEXO9mq_z3eZkUBCV9GHv_m-Y1elr3FaIlRXX66U3r5laGK1Zgg9CxbYMRoQVf4x_NsgRDBBScrdpK9ivEOpVNy_DI7wRzXmFO2yOzl5PRovJM2v3YjBPl4i7mC8R7A5ecmjiYh-Y1vzTTkTS-dA5s3D6PfWRkHo_NzP0iTZsY--Gnbpwr5-lEn913eSDv4drLGvc5edNJGeHOsp9nt5cX35qrYfPty3aw3ha4IGouW1EAQ0bXkoJL9SpUVI1LXNepkqcvUUCVVba3xipEEo1JSpJViBBTlQE-zz7PublIDtBrcGKQVu2AGGR6El0b8_eJML7Z-L0i14qQkSeBsFuj_Gbtab8Shh3BF65qzPU7sx-Nnwf-cII5iMFGDtdKBn6IgKSfMK5rA5Qzq4GMM0P1WxkgcwhQpTPEUZhp49-caT_gxvQR8ONo02_7eBBDKeN3DIAgrBaaCsbJK1PuZ6qQXchtMFLc3BGGalkAM88O6bCYghbI3EETUBpyGNmnqUbTe_M_jL8C3xFo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21071963</pqid></control><display><type>article</type><title>Functional Interactions between Distinct Sodium Channel Cytoplasmic Domains through the Action of Calmodulin</title><source>PubMed (Medline)</source><source>ScienceDirect Journals</source><creator>Potet, Franck ; Chagot, Benjamin ; Anghelescu, Mircea ; Viswanathan, Prakash C. ; Stepanovic, Svetlana Z. ; Kupershmidt, Sabina ; Chazin, Walter J. ; Balser, Jeffrey R.</creator><creatorcontrib>Potet, Franck ; Chagot, Benjamin ; Anghelescu, Mircea ; Viswanathan, Prakash C. ; Stepanovic, Svetlana Z. ; Kupershmidt, Sabina ; Chazin, Walter J. ; Balser, Jeffrey R.</creatorcontrib><description>Sodium channels are fundamental signaling molecules in excitable cells, and are molecular targets for local anesthetic agents and intracellular free Ca2+ ([Ca2+]i). Two regions of NaV1.5 have been identified previously as [Ca2+]i-sensitive modulators of channel inactivation. These include a C-terminal IQ motif that binds calmodulin (CaM) in different modes depending on Ca2+ levels, and an immediately adjacent C-terminal EF-hand domain that directly binds Ca2+. Here we show that a mutation of the IQ domain (A1924T; Brugada Syndrome) that reduces CaM binding stabilizes NaV1.5 inactivation, similarly and more extensively than even reducing [Ca2+]i. Because the DIII-DIV linker is an essential structure in NaV1.5 inactivation, we evaluated this domain for a potential CaM binding interaction. We identified a novel CaM binding site within the linker, validated its interaction with CaM by NMR spectroscopy, and revealed its micromolar affinity by isothermal titration calorimetry. Mutation of three consecutive hydrophobic residues (Phe1520-Ile1521-Phe1522) to alanines in this CaM-binding domain recapitulated the electrophysiology phenotype observed with mutation of the C-terminal IQ domain: NaV1.5 inactivation was stabilized; moreover, mutations of either CaM-binding domain abolish the well described stabilization of inactivation by lidocaine. The direct physical interaction of CaM with the C-terminal IQ domain and the DIII-DIV linker, combined with the similarity in phenotypes when CaM-binding sites in either domain are mutated, suggests these cytoplasmic structures could be functionally coupled through the action of CaM. These findings have bearing upon Na+ channel function in genetically altered channels and under pathophysiologic conditions where [Ca2+]i impacts cardiac conduction.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M806871200</identifier><identifier>PMID: 19171938</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Motifs - genetics ; Amino Acid Substitution ; Biochemistry, Molecular Biology ; Biophysics ; Biotechnology ; Brugada Syndrome - genetics ; Brugada Syndrome - metabolism ; Calcium - chemistry ; Calcium - metabolism ; Calmodulin - chemistry ; Calmodulin - genetics ; Calmodulin - metabolism ; Cell Line ; Cytoplasm - chemistry ; Cytoplasm - genetics ; Cytoplasm - metabolism ; Humans ; Life Sciences ; Membrane Transport, Structure, Function, and Biogenesis ; Muscle Proteins - chemistry ; Muscle Proteins - genetics ; Muscle Proteins - metabolism ; Mutation, Missense ; NAV1.5 Voltage-Gated Sodium Channel ; Nuclear Magnetic Resonance, Biomolecular ; Protein Stability ; Protein Structure, Quaternary - genetics ; Protein Structure, Tertiary - genetics ; Sodium Channels - chemistry ; Sodium Channels - genetics ; Sodium Channels - metabolism ; Structural Biology</subject><ispartof>The Journal of biological chemistry, 2009-03, Vol.284 (13), p.8846-8854</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2009, The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-d27e202c7a9eb9256b4682ac770fa4c456bb43bd7c158227e04a30cbb82eb39e3</citedby><cites>FETCH-LOGICAL-c620t-d27e202c7a9eb9256b4682ac770fa4c456bb43bd7c158227e04a30cbb82eb39e3</cites><orcidid>0000-0002-9153-0060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659242/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820324303$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3535,27903,27904,45759,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19171938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01637798$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Potet, Franck</creatorcontrib><creatorcontrib>Chagot, Benjamin</creatorcontrib><creatorcontrib>Anghelescu, Mircea</creatorcontrib><creatorcontrib>Viswanathan, Prakash C.</creatorcontrib><creatorcontrib>Stepanovic, Svetlana Z.</creatorcontrib><creatorcontrib>Kupershmidt, Sabina</creatorcontrib><creatorcontrib>Chazin, Walter J.</creatorcontrib><creatorcontrib>Balser, Jeffrey R.</creatorcontrib><title>Functional Interactions between Distinct Sodium Channel Cytoplasmic Domains through the Action of Calmodulin</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Sodium channels are fundamental signaling molecules in excitable cells, and are molecular targets for local anesthetic agents and intracellular free Ca2+ ([Ca2+]i). Two regions of NaV1.5 have been identified previously as [Ca2+]i-sensitive modulators of channel inactivation. These include a C-terminal IQ motif that binds calmodulin (CaM) in different modes depending on Ca2+ levels, and an immediately adjacent C-terminal EF-hand domain that directly binds Ca2+. Here we show that a mutation of the IQ domain (A1924T; Brugada Syndrome) that reduces CaM binding stabilizes NaV1.5 inactivation, similarly and more extensively than even reducing [Ca2+]i. Because the DIII-DIV linker is an essential structure in NaV1.5 inactivation, we evaluated this domain for a potential CaM binding interaction. We identified a novel CaM binding site within the linker, validated its interaction with CaM by NMR spectroscopy, and revealed its micromolar affinity by isothermal titration calorimetry. Mutation of three consecutive hydrophobic residues (Phe1520-Ile1521-Phe1522) to alanines in this CaM-binding domain recapitulated the electrophysiology phenotype observed with mutation of the C-terminal IQ domain: NaV1.5 inactivation was stabilized; moreover, mutations of either CaM-binding domain abolish the well described stabilization of inactivation by lidocaine. The direct physical interaction of CaM with the C-terminal IQ domain and the DIII-DIV linker, combined with the similarity in phenotypes when CaM-binding sites in either domain are mutated, suggests these cytoplasmic structures could be functionally coupled through the action of CaM. These findings have bearing upon Na+ channel function in genetically altered channels and under pathophysiologic conditions where [Ca2+]i impacts cardiac conduction.</description><subject>Amino Acid Motifs - genetics</subject><subject>Amino Acid Substitution</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biophysics</subject><subject>Biotechnology</subject><subject>Brugada Syndrome - genetics</subject><subject>Brugada Syndrome - metabolism</subject><subject>Calcium - chemistry</subject><subject>Calcium - metabolism</subject><subject>Calmodulin - chemistry</subject><subject>Calmodulin - genetics</subject><subject>Calmodulin - metabolism</subject><subject>Cell Line</subject><subject>Cytoplasm - chemistry</subject><subject>Cytoplasm - genetics</subject><subject>Cytoplasm - metabolism</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Membrane Transport, Structure, Function, and Biogenesis</subject><subject>Muscle Proteins - chemistry</subject><subject>Muscle Proteins - genetics</subject><subject>Muscle Proteins - metabolism</subject><subject>Mutation, Missense</subject><subject>NAV1.5 Voltage-Gated Sodium Channel</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Protein Stability</subject><subject>Protein Structure, Quaternary - genetics</subject><subject>Protein Structure, Tertiary - genetics</subject><subject>Sodium Channels - chemistry</subject><subject>Sodium Channels - genetics</subject><subject>Sodium Channels - metabolism</subject><subject>Structural Biology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kc1v1DAQxSMEokvhyhEiISH1kMUf2cS-IK3SllZaxKFU4mbZzmTjyrEXO9mq_z3eZkUBCV9GHv_m-Y1elr3FaIlRXX66U3r5laGK1Zgg9CxbYMRoQVf4x_NsgRDBBScrdpK9ivEOpVNy_DI7wRzXmFO2yOzl5PRovJM2v3YjBPl4i7mC8R7A5ecmjiYh-Y1vzTTkTS-dA5s3D6PfWRkHo_NzP0iTZsY--Gnbpwr5-lEn913eSDv4drLGvc5edNJGeHOsp9nt5cX35qrYfPty3aw3ha4IGouW1EAQ0bXkoJL9SpUVI1LXNepkqcvUUCVVba3xipEEo1JSpJViBBTlQE-zz7PublIDtBrcGKQVu2AGGR6El0b8_eJML7Z-L0i14qQkSeBsFuj_Gbtab8Shh3BF65qzPU7sx-Nnwf-cII5iMFGDtdKBn6IgKSfMK5rA5Qzq4GMM0P1WxkgcwhQpTPEUZhp49-caT_gxvQR8ONo02_7eBBDKeN3DIAgrBaaCsbJK1PuZ6qQXchtMFLc3BGGalkAM88O6bCYghbI3EETUBpyGNmnqUbTe_M_jL8C3xFo</recordid><startdate>20090327</startdate><enddate>20090327</enddate><creator>Potet, Franck</creator><creator>Chagot, Benjamin</creator><creator>Anghelescu, Mircea</creator><creator>Viswanathan, Prakash C.</creator><creator>Stepanovic, Svetlana Z.</creator><creator>Kupershmidt, Sabina</creator><creator>Chazin, Walter J.</creator><creator>Balser, Jeffrey R.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9153-0060</orcidid></search><sort><creationdate>20090327</creationdate><title>Functional Interactions between Distinct Sodium Channel Cytoplasmic Domains through the Action of Calmodulin</title><author>Potet, Franck ; Chagot, Benjamin ; Anghelescu, Mircea ; Viswanathan, Prakash C. ; Stepanovic, Svetlana Z. ; Kupershmidt, Sabina ; Chazin, Walter J. ; Balser, Jeffrey R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-d27e202c7a9eb9256b4682ac770fa4c456bb43bd7c158227e04a30cbb82eb39e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Motifs - genetics</topic><topic>Amino Acid Substitution</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biophysics</topic><topic>Biotechnology</topic><topic>Brugada Syndrome - genetics</topic><topic>Brugada Syndrome - metabolism</topic><topic>Calcium - chemistry</topic><topic>Calcium - metabolism</topic><topic>Calmodulin - chemistry</topic><topic>Calmodulin - genetics</topic><topic>Calmodulin - metabolism</topic><topic>Cell Line</topic><topic>Cytoplasm - chemistry</topic><topic>Cytoplasm - genetics</topic><topic>Cytoplasm - metabolism</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Membrane Transport, Structure, Function, and Biogenesis</topic><topic>Muscle Proteins - chemistry</topic><topic>Muscle Proteins - genetics</topic><topic>Muscle Proteins - metabolism</topic><topic>Mutation, Missense</topic><topic>NAV1.5 Voltage-Gated Sodium Channel</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Protein Stability</topic><topic>Protein Structure, Quaternary - genetics</topic><topic>Protein Structure, Tertiary - genetics</topic><topic>Sodium Channels - chemistry</topic><topic>Sodium Channels - genetics</topic><topic>Sodium Channels - metabolism</topic><topic>Structural Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Potet, Franck</creatorcontrib><creatorcontrib>Chagot, Benjamin</creatorcontrib><creatorcontrib>Anghelescu, Mircea</creatorcontrib><creatorcontrib>Viswanathan, Prakash C.</creatorcontrib><creatorcontrib>Stepanovic, Svetlana Z.</creatorcontrib><creatorcontrib>Kupershmidt, Sabina</creatorcontrib><creatorcontrib>Chazin, Walter J.</creatorcontrib><creatorcontrib>Balser, Jeffrey R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Potet, Franck</au><au>Chagot, Benjamin</au><au>Anghelescu, Mircea</au><au>Viswanathan, Prakash C.</au><au>Stepanovic, Svetlana Z.</au><au>Kupershmidt, Sabina</au><au>Chazin, Walter J.</au><au>Balser, Jeffrey R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Interactions between Distinct Sodium Channel Cytoplasmic Domains through the Action of Calmodulin</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-03-27</date><risdate>2009</risdate><volume>284</volume><issue>13</issue><spage>8846</spage><epage>8854</epage><pages>8846-8854</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Sodium channels are fundamental signaling molecules in excitable cells, and are molecular targets for local anesthetic agents and intracellular free Ca2+ ([Ca2+]i). Two regions of NaV1.5 have been identified previously as [Ca2+]i-sensitive modulators of channel inactivation. These include a C-terminal IQ motif that binds calmodulin (CaM) in different modes depending on Ca2+ levels, and an immediately adjacent C-terminal EF-hand domain that directly binds Ca2+. Here we show that a mutation of the IQ domain (A1924T; Brugada Syndrome) that reduces CaM binding stabilizes NaV1.5 inactivation, similarly and more extensively than even reducing [Ca2+]i. Because the DIII-DIV linker is an essential structure in NaV1.5 inactivation, we evaluated this domain for a potential CaM binding interaction. We identified a novel CaM binding site within the linker, validated its interaction with CaM by NMR spectroscopy, and revealed its micromolar affinity by isothermal titration calorimetry. Mutation of three consecutive hydrophobic residues (Phe1520-Ile1521-Phe1522) to alanines in this CaM-binding domain recapitulated the electrophysiology phenotype observed with mutation of the C-terminal IQ domain: NaV1.5 inactivation was stabilized; moreover, mutations of either CaM-binding domain abolish the well described stabilization of inactivation by lidocaine. The direct physical interaction of CaM with the C-terminal IQ domain and the DIII-DIV linker, combined with the similarity in phenotypes when CaM-binding sites in either domain are mutated, suggests these cytoplasmic structures could be functionally coupled through the action of CaM. These findings have bearing upon Na+ channel function in genetically altered channels and under pathophysiologic conditions where [Ca2+]i impacts cardiac conduction.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19171938</pmid><doi>10.1074/jbc.M806871200</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9153-0060</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2009-03, Vol.284 (13), p.8846-8854
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2659242
source PubMed (Medline); ScienceDirect Journals
subjects Amino Acid Motifs - genetics
Amino Acid Substitution
Biochemistry, Molecular Biology
Biophysics
Biotechnology
Brugada Syndrome - genetics
Brugada Syndrome - metabolism
Calcium - chemistry
Calcium - metabolism
Calmodulin - chemistry
Calmodulin - genetics
Calmodulin - metabolism
Cell Line
Cytoplasm - chemistry
Cytoplasm - genetics
Cytoplasm - metabolism
Humans
Life Sciences
Membrane Transport, Structure, Function, and Biogenesis
Muscle Proteins - chemistry
Muscle Proteins - genetics
Muscle Proteins - metabolism
Mutation, Missense
NAV1.5 Voltage-Gated Sodium Channel
Nuclear Magnetic Resonance, Biomolecular
Protein Stability
Protein Structure, Quaternary - genetics
Protein Structure, Tertiary - genetics
Sodium Channels - chemistry
Sodium Channels - genetics
Sodium Channels - metabolism
Structural Biology
title Functional Interactions between Distinct Sodium Channel Cytoplasmic Domains through the Action of Calmodulin
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Interactions%20between%20Distinct%20Sodium%20Channel%20Cytoplasmic%20Domains%20through%20the%20Action%20of%20Calmodulin&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Potet,%20Franck&rft.date=2009-03-27&rft.volume=284&rft.issue=13&rft.spage=8846&rft.epage=8854&rft.pages=8846-8854&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M806871200&rft_dat=%3Cproquest_pubme%3E21071963%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c620t-d27e202c7a9eb9256b4682ac770fa4c456bb43bd7c158227e04a30cbb82eb39e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=21071963&rft_id=info:pmid/19171938&rfr_iscdi=true