Loading…
Functional Interactions between Distinct Sodium Channel Cytoplasmic Domains through the Action of Calmodulin
Sodium channels are fundamental signaling molecules in excitable cells, and are molecular targets for local anesthetic agents and intracellular free Ca2+ ([Ca2+]i). Two regions of NaV1.5 have been identified previously as [Ca2+]i-sensitive modulators of channel inactivation. These include a C-termin...
Saved in:
Published in: | The Journal of biological chemistry 2009-03, Vol.284 (13), p.8846-8854 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c620t-d27e202c7a9eb9256b4682ac770fa4c456bb43bd7c158227e04a30cbb82eb39e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c620t-d27e202c7a9eb9256b4682ac770fa4c456bb43bd7c158227e04a30cbb82eb39e3 |
container_end_page | 8854 |
container_issue | 13 |
container_start_page | 8846 |
container_title | The Journal of biological chemistry |
container_volume | 284 |
creator | Potet, Franck Chagot, Benjamin Anghelescu, Mircea Viswanathan, Prakash C. Stepanovic, Svetlana Z. Kupershmidt, Sabina Chazin, Walter J. Balser, Jeffrey R. |
description | Sodium channels are fundamental signaling molecules in excitable cells, and are molecular targets for local anesthetic agents and intracellular free Ca2+ ([Ca2+]i). Two regions of NaV1.5 have been identified previously as [Ca2+]i-sensitive modulators of channel inactivation. These include a C-terminal IQ motif that binds calmodulin (CaM) in different modes depending on Ca2+ levels, and an immediately adjacent C-terminal EF-hand domain that directly binds Ca2+. Here we show that a mutation of the IQ domain (A1924T; Brugada Syndrome) that reduces CaM binding stabilizes NaV1.5 inactivation, similarly and more extensively than even reducing [Ca2+]i. Because the DIII-DIV linker is an essential structure in NaV1.5 inactivation, we evaluated this domain for a potential CaM binding interaction. We identified a novel CaM binding site within the linker, validated its interaction with CaM by NMR spectroscopy, and revealed its micromolar affinity by isothermal titration calorimetry. Mutation of three consecutive hydrophobic residues (Phe1520-Ile1521-Phe1522) to alanines in this CaM-binding domain recapitulated the electrophysiology phenotype observed with mutation of the C-terminal IQ domain: NaV1.5 inactivation was stabilized; moreover, mutations of either CaM-binding domain abolish the well described stabilization of inactivation by lidocaine. The direct physical interaction of CaM with the C-terminal IQ domain and the DIII-DIV linker, combined with the similarity in phenotypes when CaM-binding sites in either domain are mutated, suggests these cytoplasmic structures could be functionally coupled through the action of CaM. These findings have bearing upon Na+ channel function in genetically altered channels and under pathophysiologic conditions where [Ca2+]i impacts cardiac conduction. |
doi_str_mv | 10.1074/jbc.M806871200 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2659242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820324303</els_id><sourcerecordid>21071963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-d27e202c7a9eb9256b4682ac770fa4c456bb43bd7c158227e04a30cbb82eb39e3</originalsourceid><addsrcrecordid>eNp1kc1v1DAQxSMEokvhyhEiISH1kMUf2cS-IK3SllZaxKFU4mbZzmTjyrEXO9mq_z3eZkUBCV9GHv_m-Y1elr3FaIlRXX66U3r5laGK1Zgg9CxbYMRoQVf4x_NsgRDBBScrdpK9ivEOpVNy_DI7wRzXmFO2yOzl5PRovJM2v3YjBPl4i7mC8R7A5ecmjiYh-Y1vzTTkTS-dA5s3D6PfWRkHo_NzP0iTZsY--Gnbpwr5-lEn913eSDv4drLGvc5edNJGeHOsp9nt5cX35qrYfPty3aw3ha4IGouW1EAQ0bXkoJL9SpUVI1LXNepkqcvUUCVVba3xipEEo1JSpJViBBTlQE-zz7PublIDtBrcGKQVu2AGGR6El0b8_eJML7Z-L0i14qQkSeBsFuj_Gbtab8Shh3BF65qzPU7sx-Nnwf-cII5iMFGDtdKBn6IgKSfMK5rA5Qzq4GMM0P1WxkgcwhQpTPEUZhp49-caT_gxvQR8ONo02_7eBBDKeN3DIAgrBaaCsbJK1PuZ6qQXchtMFLc3BGGalkAM88O6bCYghbI3EETUBpyGNmnqUbTe_M_jL8C3xFo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21071963</pqid></control><display><type>article</type><title>Functional Interactions between Distinct Sodium Channel Cytoplasmic Domains through the Action of Calmodulin</title><source>PubMed (Medline)</source><source>ScienceDirect Journals</source><creator>Potet, Franck ; Chagot, Benjamin ; Anghelescu, Mircea ; Viswanathan, Prakash C. ; Stepanovic, Svetlana Z. ; Kupershmidt, Sabina ; Chazin, Walter J. ; Balser, Jeffrey R.</creator><creatorcontrib>Potet, Franck ; Chagot, Benjamin ; Anghelescu, Mircea ; Viswanathan, Prakash C. ; Stepanovic, Svetlana Z. ; Kupershmidt, Sabina ; Chazin, Walter J. ; Balser, Jeffrey R.</creatorcontrib><description>Sodium channels are fundamental signaling molecules in excitable cells, and are molecular targets for local anesthetic agents and intracellular free Ca2+ ([Ca2+]i). Two regions of NaV1.5 have been identified previously as [Ca2+]i-sensitive modulators of channel inactivation. These include a C-terminal IQ motif that binds calmodulin (CaM) in different modes depending on Ca2+ levels, and an immediately adjacent C-terminal EF-hand domain that directly binds Ca2+. Here we show that a mutation of the IQ domain (A1924T; Brugada Syndrome) that reduces CaM binding stabilizes NaV1.5 inactivation, similarly and more extensively than even reducing [Ca2+]i. Because the DIII-DIV linker is an essential structure in NaV1.5 inactivation, we evaluated this domain for a potential CaM binding interaction. We identified a novel CaM binding site within the linker, validated its interaction with CaM by NMR spectroscopy, and revealed its micromolar affinity by isothermal titration calorimetry. Mutation of three consecutive hydrophobic residues (Phe1520-Ile1521-Phe1522) to alanines in this CaM-binding domain recapitulated the electrophysiology phenotype observed with mutation of the C-terminal IQ domain: NaV1.5 inactivation was stabilized; moreover, mutations of either CaM-binding domain abolish the well described stabilization of inactivation by lidocaine. The direct physical interaction of CaM with the C-terminal IQ domain and the DIII-DIV linker, combined with the similarity in phenotypes when CaM-binding sites in either domain are mutated, suggests these cytoplasmic structures could be functionally coupled through the action of CaM. These findings have bearing upon Na+ channel function in genetically altered channels and under pathophysiologic conditions where [Ca2+]i impacts cardiac conduction.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M806871200</identifier><identifier>PMID: 19171938</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Motifs - genetics ; Amino Acid Substitution ; Biochemistry, Molecular Biology ; Biophysics ; Biotechnology ; Brugada Syndrome - genetics ; Brugada Syndrome - metabolism ; Calcium - chemistry ; Calcium - metabolism ; Calmodulin - chemistry ; Calmodulin - genetics ; Calmodulin - metabolism ; Cell Line ; Cytoplasm - chemistry ; Cytoplasm - genetics ; Cytoplasm - metabolism ; Humans ; Life Sciences ; Membrane Transport, Structure, Function, and Biogenesis ; Muscle Proteins - chemistry ; Muscle Proteins - genetics ; Muscle Proteins - metabolism ; Mutation, Missense ; NAV1.5 Voltage-Gated Sodium Channel ; Nuclear Magnetic Resonance, Biomolecular ; Protein Stability ; Protein Structure, Quaternary - genetics ; Protein Structure, Tertiary - genetics ; Sodium Channels - chemistry ; Sodium Channels - genetics ; Sodium Channels - metabolism ; Structural Biology</subject><ispartof>The Journal of biological chemistry, 2009-03, Vol.284 (13), p.8846-8854</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2009, The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-d27e202c7a9eb9256b4682ac770fa4c456bb43bd7c158227e04a30cbb82eb39e3</citedby><cites>FETCH-LOGICAL-c620t-d27e202c7a9eb9256b4682ac770fa4c456bb43bd7c158227e04a30cbb82eb39e3</cites><orcidid>0000-0002-9153-0060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659242/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820324303$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3535,27903,27904,45759,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19171938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01637798$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Potet, Franck</creatorcontrib><creatorcontrib>Chagot, Benjamin</creatorcontrib><creatorcontrib>Anghelescu, Mircea</creatorcontrib><creatorcontrib>Viswanathan, Prakash C.</creatorcontrib><creatorcontrib>Stepanovic, Svetlana Z.</creatorcontrib><creatorcontrib>Kupershmidt, Sabina</creatorcontrib><creatorcontrib>Chazin, Walter J.</creatorcontrib><creatorcontrib>Balser, Jeffrey R.</creatorcontrib><title>Functional Interactions between Distinct Sodium Channel Cytoplasmic Domains through the Action of Calmodulin</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Sodium channels are fundamental signaling molecules in excitable cells, and are molecular targets for local anesthetic agents and intracellular free Ca2+ ([Ca2+]i). Two regions of NaV1.5 have been identified previously as [Ca2+]i-sensitive modulators of channel inactivation. These include a C-terminal IQ motif that binds calmodulin (CaM) in different modes depending on Ca2+ levels, and an immediately adjacent C-terminal EF-hand domain that directly binds Ca2+. Here we show that a mutation of the IQ domain (A1924T; Brugada Syndrome) that reduces CaM binding stabilizes NaV1.5 inactivation, similarly and more extensively than even reducing [Ca2+]i. Because the DIII-DIV linker is an essential structure in NaV1.5 inactivation, we evaluated this domain for a potential CaM binding interaction. We identified a novel CaM binding site within the linker, validated its interaction with CaM by NMR spectroscopy, and revealed its micromolar affinity by isothermal titration calorimetry. Mutation of three consecutive hydrophobic residues (Phe1520-Ile1521-Phe1522) to alanines in this CaM-binding domain recapitulated the electrophysiology phenotype observed with mutation of the C-terminal IQ domain: NaV1.5 inactivation was stabilized; moreover, mutations of either CaM-binding domain abolish the well described stabilization of inactivation by lidocaine. The direct physical interaction of CaM with the C-terminal IQ domain and the DIII-DIV linker, combined with the similarity in phenotypes when CaM-binding sites in either domain are mutated, suggests these cytoplasmic structures could be functionally coupled through the action of CaM. These findings have bearing upon Na+ channel function in genetically altered channels and under pathophysiologic conditions where [Ca2+]i impacts cardiac conduction.</description><subject>Amino Acid Motifs - genetics</subject><subject>Amino Acid Substitution</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biophysics</subject><subject>Biotechnology</subject><subject>Brugada Syndrome - genetics</subject><subject>Brugada Syndrome - metabolism</subject><subject>Calcium - chemistry</subject><subject>Calcium - metabolism</subject><subject>Calmodulin - chemistry</subject><subject>Calmodulin - genetics</subject><subject>Calmodulin - metabolism</subject><subject>Cell Line</subject><subject>Cytoplasm - chemistry</subject><subject>Cytoplasm - genetics</subject><subject>Cytoplasm - metabolism</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Membrane Transport, Structure, Function, and Biogenesis</subject><subject>Muscle Proteins - chemistry</subject><subject>Muscle Proteins - genetics</subject><subject>Muscle Proteins - metabolism</subject><subject>Mutation, Missense</subject><subject>NAV1.5 Voltage-Gated Sodium Channel</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Protein Stability</subject><subject>Protein Structure, Quaternary - genetics</subject><subject>Protein Structure, Tertiary - genetics</subject><subject>Sodium Channels - chemistry</subject><subject>Sodium Channels - genetics</subject><subject>Sodium Channels - metabolism</subject><subject>Structural Biology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kc1v1DAQxSMEokvhyhEiISH1kMUf2cS-IK3SllZaxKFU4mbZzmTjyrEXO9mq_z3eZkUBCV9GHv_m-Y1elr3FaIlRXX66U3r5laGK1Zgg9CxbYMRoQVf4x_NsgRDBBScrdpK9ivEOpVNy_DI7wRzXmFO2yOzl5PRovJM2v3YjBPl4i7mC8R7A5ecmjiYh-Y1vzTTkTS-dA5s3D6PfWRkHo_NzP0iTZsY--Gnbpwr5-lEn913eSDv4drLGvc5edNJGeHOsp9nt5cX35qrYfPty3aw3ha4IGouW1EAQ0bXkoJL9SpUVI1LXNepkqcvUUCVVba3xipEEo1JSpJViBBTlQE-zz7PublIDtBrcGKQVu2AGGR6El0b8_eJML7Z-L0i14qQkSeBsFuj_Gbtab8Shh3BF65qzPU7sx-Nnwf-cII5iMFGDtdKBn6IgKSfMK5rA5Qzq4GMM0P1WxkgcwhQpTPEUZhp49-caT_gxvQR8ONo02_7eBBDKeN3DIAgrBaaCsbJK1PuZ6qQXchtMFLc3BGGalkAM88O6bCYghbI3EETUBpyGNmnqUbTe_M_jL8C3xFo</recordid><startdate>20090327</startdate><enddate>20090327</enddate><creator>Potet, Franck</creator><creator>Chagot, Benjamin</creator><creator>Anghelescu, Mircea</creator><creator>Viswanathan, Prakash C.</creator><creator>Stepanovic, Svetlana Z.</creator><creator>Kupershmidt, Sabina</creator><creator>Chazin, Walter J.</creator><creator>Balser, Jeffrey R.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9153-0060</orcidid></search><sort><creationdate>20090327</creationdate><title>Functional Interactions between Distinct Sodium Channel Cytoplasmic Domains through the Action of Calmodulin</title><author>Potet, Franck ; Chagot, Benjamin ; Anghelescu, Mircea ; Viswanathan, Prakash C. ; Stepanovic, Svetlana Z. ; Kupershmidt, Sabina ; Chazin, Walter J. ; Balser, Jeffrey R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-d27e202c7a9eb9256b4682ac770fa4c456bb43bd7c158227e04a30cbb82eb39e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Motifs - genetics</topic><topic>Amino Acid Substitution</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biophysics</topic><topic>Biotechnology</topic><topic>Brugada Syndrome - genetics</topic><topic>Brugada Syndrome - metabolism</topic><topic>Calcium - chemistry</topic><topic>Calcium - metabolism</topic><topic>Calmodulin - chemistry</topic><topic>Calmodulin - genetics</topic><topic>Calmodulin - metabolism</topic><topic>Cell Line</topic><topic>Cytoplasm - chemistry</topic><topic>Cytoplasm - genetics</topic><topic>Cytoplasm - metabolism</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Membrane Transport, Structure, Function, and Biogenesis</topic><topic>Muscle Proteins - chemistry</topic><topic>Muscle Proteins - genetics</topic><topic>Muscle Proteins - metabolism</topic><topic>Mutation, Missense</topic><topic>NAV1.5 Voltage-Gated Sodium Channel</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Protein Stability</topic><topic>Protein Structure, Quaternary - genetics</topic><topic>Protein Structure, Tertiary - genetics</topic><topic>Sodium Channels - chemistry</topic><topic>Sodium Channels - genetics</topic><topic>Sodium Channels - metabolism</topic><topic>Structural Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Potet, Franck</creatorcontrib><creatorcontrib>Chagot, Benjamin</creatorcontrib><creatorcontrib>Anghelescu, Mircea</creatorcontrib><creatorcontrib>Viswanathan, Prakash C.</creatorcontrib><creatorcontrib>Stepanovic, Svetlana Z.</creatorcontrib><creatorcontrib>Kupershmidt, Sabina</creatorcontrib><creatorcontrib>Chazin, Walter J.</creatorcontrib><creatorcontrib>Balser, Jeffrey R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Potet, Franck</au><au>Chagot, Benjamin</au><au>Anghelescu, Mircea</au><au>Viswanathan, Prakash C.</au><au>Stepanovic, Svetlana Z.</au><au>Kupershmidt, Sabina</au><au>Chazin, Walter J.</au><au>Balser, Jeffrey R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Interactions between Distinct Sodium Channel Cytoplasmic Domains through the Action of Calmodulin</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-03-27</date><risdate>2009</risdate><volume>284</volume><issue>13</issue><spage>8846</spage><epage>8854</epage><pages>8846-8854</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Sodium channels are fundamental signaling molecules in excitable cells, and are molecular targets for local anesthetic agents and intracellular free Ca2+ ([Ca2+]i). Two regions of NaV1.5 have been identified previously as [Ca2+]i-sensitive modulators of channel inactivation. These include a C-terminal IQ motif that binds calmodulin (CaM) in different modes depending on Ca2+ levels, and an immediately adjacent C-terminal EF-hand domain that directly binds Ca2+. Here we show that a mutation of the IQ domain (A1924T; Brugada Syndrome) that reduces CaM binding stabilizes NaV1.5 inactivation, similarly and more extensively than even reducing [Ca2+]i. Because the DIII-DIV linker is an essential structure in NaV1.5 inactivation, we evaluated this domain for a potential CaM binding interaction. We identified a novel CaM binding site within the linker, validated its interaction with CaM by NMR spectroscopy, and revealed its micromolar affinity by isothermal titration calorimetry. Mutation of three consecutive hydrophobic residues (Phe1520-Ile1521-Phe1522) to alanines in this CaM-binding domain recapitulated the electrophysiology phenotype observed with mutation of the C-terminal IQ domain: NaV1.5 inactivation was stabilized; moreover, mutations of either CaM-binding domain abolish the well described stabilization of inactivation by lidocaine. The direct physical interaction of CaM with the C-terminal IQ domain and the DIII-DIV linker, combined with the similarity in phenotypes when CaM-binding sites in either domain are mutated, suggests these cytoplasmic structures could be functionally coupled through the action of CaM. These findings have bearing upon Na+ channel function in genetically altered channels and under pathophysiologic conditions where [Ca2+]i impacts cardiac conduction.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19171938</pmid><doi>10.1074/jbc.M806871200</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9153-0060</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2009-03, Vol.284 (13), p.8846-8854 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2659242 |
source | PubMed (Medline); ScienceDirect Journals |
subjects | Amino Acid Motifs - genetics Amino Acid Substitution Biochemistry, Molecular Biology Biophysics Biotechnology Brugada Syndrome - genetics Brugada Syndrome - metabolism Calcium - chemistry Calcium - metabolism Calmodulin - chemistry Calmodulin - genetics Calmodulin - metabolism Cell Line Cytoplasm - chemistry Cytoplasm - genetics Cytoplasm - metabolism Humans Life Sciences Membrane Transport, Structure, Function, and Biogenesis Muscle Proteins - chemistry Muscle Proteins - genetics Muscle Proteins - metabolism Mutation, Missense NAV1.5 Voltage-Gated Sodium Channel Nuclear Magnetic Resonance, Biomolecular Protein Stability Protein Structure, Quaternary - genetics Protein Structure, Tertiary - genetics Sodium Channels - chemistry Sodium Channels - genetics Sodium Channels - metabolism Structural Biology |
title | Functional Interactions between Distinct Sodium Channel Cytoplasmic Domains through the Action of Calmodulin |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Interactions%20between%20Distinct%20Sodium%20Channel%20Cytoplasmic%20Domains%20through%20the%20Action%20of%20Calmodulin&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Potet,%20Franck&rft.date=2009-03-27&rft.volume=284&rft.issue=13&rft.spage=8846&rft.epage=8854&rft.pages=8846-8854&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M806871200&rft_dat=%3Cproquest_pubme%3E21071963%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c620t-d27e202c7a9eb9256b4682ac770fa4c456bb43bd7c158227e04a30cbb82eb39e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=21071963&rft_id=info:pmid/19171938&rfr_iscdi=true |