Loading…
The actin cytoskeleton differentially regulates NG115-401L cell ryanodine receptor and inositol 1,4,5-trisphosphate receptor induced calcium signaling pathways
Regulation of bi-directional communication between intracellular Ca2+ pools and surface Ca2+ channels remains incompletely characterized. We report Ca2+ release mediated by inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RyR) pathways is diminished under actin cytoskeleton disru...
Saved in:
Published in: | Biochemical and biophysical research communications 2009-02, Vol.379 (2), p.594-599 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Regulation of bi-directional communication between intracellular Ca2+ pools and surface Ca2+ channels remains incompletely characterized. We report Ca2+ release mediated by inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RyR) pathways is diminished under actin cytoskeleton disruption in NG115-401L (401L) neuronal cells, yet despite truncated Ca2+ release, Ca2+ influx was not significantly altered in these experiments. However, disruption of cortical actin networks completely abolished IP3R induced Ca2+ release, whereas RyR-mediated Ca2+ release was preserved, albeit attenuated. Moreover, cortical actin disruption completely abolished IP3R and RyR linked Ca2+ influx even though Ca2+ pool sensitivities were different. These findings suggest discrete Ca2+ store/Ca2+ channel coupling mechanisms in the IP3R and RyR pathways as revealed by the differential sensitivity to actin perturbation. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1016/j.bbrc.2008.12.138 |