Loading…
GM-CSF and IL-4 synergistically trigger dendritic cells to acquire retinoic acid-producing capacity
Retinoic acid (RA) produced by intestinal dendritic cells (DCs) imprints gut-homing specificity on lymphocytes and enhances Foxp3+ regulatory T-cell differentiation. The expression of aldehyde dehydrogenase (ALDH) 1A in these DCs is essential for the RA production. However, it remains unclear how th...
Saved in:
Published in: | International immunology 2009-04, Vol.21 (4), p.361-377 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c677t-21c59a864c7075e6152b4fd5375fbe5c987ea94a05e7525d3b02803763bdaae33 |
---|---|
cites | cdi_FETCH-LOGICAL-c677t-21c59a864c7075e6152b4fd5375fbe5c987ea94a05e7525d3b02803763bdaae33 |
container_end_page | 377 |
container_issue | 4 |
container_start_page | 361 |
container_title | International immunology |
container_volume | 21 |
creator | Yokota, Aya Takeuchi, Hajime Maeda, Naoko Ohoka, Yoshiharu Kato, Chieko Song, Si-Young Iwata, Makoto |
description | Retinoic acid (RA) produced by intestinal dendritic cells (DCs) imprints gut-homing specificity on lymphocytes and enhances Foxp3+ regulatory T-cell differentiation. The expression of aldehyde dehydrogenase (ALDH) 1A in these DCs is essential for the RA production. However, it remains unclear how the steady-state ALDH1A expression is induced under specific pathogen-free (SPF) conditions. Here, we found that bone marrow-derived dendritic cells (BM-DCs) generated with granulocyte-macrophage colony-stimulating factor (GM-CSF) expressed Aldh1a2, an isoform of Aldh1a, but that fms-related tyrosine kinase 3 ligand-generated BM-DCs did not. DCs from mesenteric lymph nodes (MLN) and Peyer's patches (PP) of normal SPF mice expressed ALDH1A2, but not the other known RA-producing enzymes. Employing a flow cytometric method, we detected ALDH activities in 10–30% of PP-DCs and MLN-DCs. They were CD11chighCD4−/lowCD8αintermediateCD11b−/low F4/80low/intermediateCD45RBlowCD86highMHC class IIhighB220−CD103+. Equivalent levels of aldehyde dehydrogenase activity (ALDHact) and ALDH1A2 expression were induced synergistically by GM-CSF and IL-4 in splenic DCs in vitro. In BM-DCs, however, additional signals via Toll-like receptors or RA receptors were required for inducing the equivalent levels. The generated ALDH1A2+ DCs triggered T cells to express gut-homing receptors or Foxp3. GM-CSF receptor-deficient or vitamin A-deficient mice exhibited marked reductions in the ALDHact in intestinal DCs and the T cell number in the intestinal lamina propria, whereas IL-4 receptor-mediated signals were dispensable. GM-CSF+CD11c−F4/80+ cells existed constitutively in the intestinal tissues. The results suggest that GM-CSF and RA itself are pivotal among multiple microenvironment factors that enable intestinal DCs to produce RA. |
doi_str_mv | 10.1093/intimm/dxp003 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2660862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/intimm/dxp003</oup_id><sourcerecordid>67072385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c677t-21c59a864c7075e6152b4fd5375fbe5c987ea94a05e7525d3b02803763bdaae33</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EokNhyRZZLBAbUz_iONkgVRGdVpoKUYpAbCzH9gSXxE7tBHX-PR5lVB6brizd--n4nHsAeEnwO4JrduL85IbhxNyNGLNHYEWKEiPKhHgMVrjmDFVEVEfgWUo3OBO0Zk_BEalJjXFVrIBeX6Lm8xlU3sCLDSpg2nkbO5cmp1Xf7-AUXdfZCI31Jro8hdr2fYJTgErfzi5aGO3kfMgbpZ1BYwxm1s53UKsxT6bdc_Bkq_pkXxzeY_Dl7MN1c442H9cXzekG6VKICVGiea2qstACC25LwmlbbA1ngm9by3VdCavqQmFuBafcsBbTCjNRstYoZRk7Bu8X3XFuB2u09VNUvRyjG1TcyaCc_Hfj3Q_ZhV-SliWuSpoF3hwEYridbZrk4NI-rvI2zEmW2RhlFX8QpJjjApO9pdf_gTdhjj5fQZKaY8pIQTKEFkjHkFK023vLBMt9yXIpWS4lZ_7V3zn_0IdWM_B2AcI8Pqh1-Ds3bu_uYRV_5rT58vL823fZXDWX609fr-UV-w3UksK4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195023141</pqid></control><display><type>article</type><title>GM-CSF and IL-4 synergistically trigger dendritic cells to acquire retinoic acid-producing capacity</title><source>Oxford Journals Online</source><creator>Yokota, Aya ; Takeuchi, Hajime ; Maeda, Naoko ; Ohoka, Yoshiharu ; Kato, Chieko ; Song, Si-Young ; Iwata, Makoto</creator><creatorcontrib>Yokota, Aya ; Takeuchi, Hajime ; Maeda, Naoko ; Ohoka, Yoshiharu ; Kato, Chieko ; Song, Si-Young ; Iwata, Makoto</creatorcontrib><description>Retinoic acid (RA) produced by intestinal dendritic cells (DCs) imprints gut-homing specificity on lymphocytes and enhances Foxp3+ regulatory T-cell differentiation. The expression of aldehyde dehydrogenase (ALDH) 1A in these DCs is essential for the RA production. However, it remains unclear how the steady-state ALDH1A expression is induced under specific pathogen-free (SPF) conditions. Here, we found that bone marrow-derived dendritic cells (BM-DCs) generated with granulocyte-macrophage colony-stimulating factor (GM-CSF) expressed Aldh1a2, an isoform of Aldh1a, but that fms-related tyrosine kinase 3 ligand-generated BM-DCs did not. DCs from mesenteric lymph nodes (MLN) and Peyer's patches (PP) of normal SPF mice expressed ALDH1A2, but not the other known RA-producing enzymes. Employing a flow cytometric method, we detected ALDH activities in 10–30% of PP-DCs and MLN-DCs. They were CD11chighCD4−/lowCD8αintermediateCD11b−/low F4/80low/intermediateCD45RBlowCD86highMHC class IIhighB220−CD103+. Equivalent levels of aldehyde dehydrogenase activity (ALDHact) and ALDH1A2 expression were induced synergistically by GM-CSF and IL-4 in splenic DCs in vitro. In BM-DCs, however, additional signals via Toll-like receptors or RA receptors were required for inducing the equivalent levels. The generated ALDH1A2+ DCs triggered T cells to express gut-homing receptors or Foxp3. GM-CSF receptor-deficient or vitamin A-deficient mice exhibited marked reductions in the ALDHact in intestinal DCs and the T cell number in the intestinal lamina propria, whereas IL-4 receptor-mediated signals were dispensable. GM-CSF+CD11c−F4/80+ cells existed constitutively in the intestinal tissues. The results suggest that GM-CSF and RA itself are pivotal among multiple microenvironment factors that enable intestinal DCs to produce RA.</description><identifier>ISSN: 0953-8178</identifier><identifier>EISSN: 1460-2377</identifier><identifier>DOI: 10.1093/intimm/dxp003</identifier><identifier>PMID: 19190084</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Aldehyde Dehydrogenase - biosynthesis ; Aldehyde Dehydrogenase - genetics ; Animals ; Cells, Cultured ; Coculture Techniques ; Dendritic Cells - drug effects ; Dendritic Cells - immunology ; Dendritic Cells - metabolism ; fms-Like Tyrosine Kinase 3 - pharmacology ; Granulocyte-Macrophage Colony-Stimulating Factor - pharmacology ; gut ; homing ; Interleukin-13 - pharmacology ; Interleukin-4 - pharmacology ; Intestines - immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Knockout ; Peyer's Patches - immunology ; RALDH ; Receptors, Interleukin-4 - genetics ; Receptors, Interleukin-4 - metabolism ; regulatory T ; T-Lymphocytes, Regulatory - immunology ; T-Lymphocytes, Regulatory - metabolism ; Th17 ; Tretinoin - metabolism</subject><ispartof>International immunology, 2009-04, Vol.21 (4), p.361-377</ispartof><rights>The Author 2009. Published by Oxford University Press on behalf of The Japanese Society for Immunology. All rights reserved. 2009</rights><rights>The Author 2009. Published by Oxford University Press on behalf of The Japanese Society for Immunology. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c677t-21c59a864c7075e6152b4fd5375fbe5c987ea94a05e7525d3b02803763bdaae33</citedby><cites>FETCH-LOGICAL-c677t-21c59a864c7075e6152b4fd5375fbe5c987ea94a05e7525d3b02803763bdaae33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19190084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yokota, Aya</creatorcontrib><creatorcontrib>Takeuchi, Hajime</creatorcontrib><creatorcontrib>Maeda, Naoko</creatorcontrib><creatorcontrib>Ohoka, Yoshiharu</creatorcontrib><creatorcontrib>Kato, Chieko</creatorcontrib><creatorcontrib>Song, Si-Young</creatorcontrib><creatorcontrib>Iwata, Makoto</creatorcontrib><title>GM-CSF and IL-4 synergistically trigger dendritic cells to acquire retinoic acid-producing capacity</title><title>International immunology</title><addtitle>Int Immunol</addtitle><description>Retinoic acid (RA) produced by intestinal dendritic cells (DCs) imprints gut-homing specificity on lymphocytes and enhances Foxp3+ regulatory T-cell differentiation. The expression of aldehyde dehydrogenase (ALDH) 1A in these DCs is essential for the RA production. However, it remains unclear how the steady-state ALDH1A expression is induced under specific pathogen-free (SPF) conditions. Here, we found that bone marrow-derived dendritic cells (BM-DCs) generated with granulocyte-macrophage colony-stimulating factor (GM-CSF) expressed Aldh1a2, an isoform of Aldh1a, but that fms-related tyrosine kinase 3 ligand-generated BM-DCs did not. DCs from mesenteric lymph nodes (MLN) and Peyer's patches (PP) of normal SPF mice expressed ALDH1A2, but not the other known RA-producing enzymes. Employing a flow cytometric method, we detected ALDH activities in 10–30% of PP-DCs and MLN-DCs. They were CD11chighCD4−/lowCD8αintermediateCD11b−/low F4/80low/intermediateCD45RBlowCD86highMHC class IIhighB220−CD103+. Equivalent levels of aldehyde dehydrogenase activity (ALDHact) and ALDH1A2 expression were induced synergistically by GM-CSF and IL-4 in splenic DCs in vitro. In BM-DCs, however, additional signals via Toll-like receptors or RA receptors were required for inducing the equivalent levels. The generated ALDH1A2+ DCs triggered T cells to express gut-homing receptors or Foxp3. GM-CSF receptor-deficient or vitamin A-deficient mice exhibited marked reductions in the ALDHact in intestinal DCs and the T cell number in the intestinal lamina propria, whereas IL-4 receptor-mediated signals were dispensable. GM-CSF+CD11c−F4/80+ cells existed constitutively in the intestinal tissues. The results suggest that GM-CSF and RA itself are pivotal among multiple microenvironment factors that enable intestinal DCs to produce RA.</description><subject>Aldehyde Dehydrogenase - biosynthesis</subject><subject>Aldehyde Dehydrogenase - genetics</subject><subject>Animals</subject><subject>Cells, Cultured</subject><subject>Coculture Techniques</subject><subject>Dendritic Cells - drug effects</subject><subject>Dendritic Cells - immunology</subject><subject>Dendritic Cells - metabolism</subject><subject>fms-Like Tyrosine Kinase 3 - pharmacology</subject><subject>Granulocyte-Macrophage Colony-Stimulating Factor - pharmacology</subject><subject>gut</subject><subject>homing</subject><subject>Interleukin-13 - pharmacology</subject><subject>Interleukin-4 - pharmacology</subject><subject>Intestines - immunology</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Peyer's Patches - immunology</subject><subject>RALDH</subject><subject>Receptors, Interleukin-4 - genetics</subject><subject>Receptors, Interleukin-4 - metabolism</subject><subject>regulatory T</subject><subject>T-Lymphocytes, Regulatory - immunology</subject><subject>T-Lymphocytes, Regulatory - metabolism</subject><subject>Th17</subject><subject>Tretinoin - metabolism</subject><issn>0953-8178</issn><issn>1460-2377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1DAUhS0EokNhyRZZLBAbUz_iONkgVRGdVpoKUYpAbCzH9gSXxE7tBHX-PR5lVB6brizd--n4nHsAeEnwO4JrduL85IbhxNyNGLNHYEWKEiPKhHgMVrjmDFVEVEfgWUo3OBO0Zk_BEalJjXFVrIBeX6Lm8xlU3sCLDSpg2nkbO5cmp1Xf7-AUXdfZCI31Jro8hdr2fYJTgErfzi5aGO3kfMgbpZ1BYwxm1s53UKsxT6bdc_Bkq_pkXxzeY_Dl7MN1c442H9cXzekG6VKICVGiea2qstACC25LwmlbbA1ngm9by3VdCavqQmFuBafcsBbTCjNRstYoZRk7Bu8X3XFuB2u09VNUvRyjG1TcyaCc_Hfj3Q_ZhV-SliWuSpoF3hwEYridbZrk4NI-rvI2zEmW2RhlFX8QpJjjApO9pdf_gTdhjj5fQZKaY8pIQTKEFkjHkFK023vLBMt9yXIpWS4lZ_7V3zn_0IdWM_B2AcI8Pqh1-Ds3bu_uYRV_5rT58vL823fZXDWX609fr-UV-w3UksK4</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Yokota, Aya</creator><creator>Takeuchi, Hajime</creator><creator>Maeda, Naoko</creator><creator>Ohoka, Yoshiharu</creator><creator>Kato, Chieko</creator><creator>Song, Si-Young</creator><creator>Iwata, Makoto</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090401</creationdate><title>GM-CSF and IL-4 synergistically trigger dendritic cells to acquire retinoic acid-producing capacity</title><author>Yokota, Aya ; Takeuchi, Hajime ; Maeda, Naoko ; Ohoka, Yoshiharu ; Kato, Chieko ; Song, Si-Young ; Iwata, Makoto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c677t-21c59a864c7075e6152b4fd5375fbe5c987ea94a05e7525d3b02803763bdaae33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aldehyde Dehydrogenase - biosynthesis</topic><topic>Aldehyde Dehydrogenase - genetics</topic><topic>Animals</topic><topic>Cells, Cultured</topic><topic>Coculture Techniques</topic><topic>Dendritic Cells - drug effects</topic><topic>Dendritic Cells - immunology</topic><topic>Dendritic Cells - metabolism</topic><topic>fms-Like Tyrosine Kinase 3 - pharmacology</topic><topic>Granulocyte-Macrophage Colony-Stimulating Factor - pharmacology</topic><topic>gut</topic><topic>homing</topic><topic>Interleukin-13 - pharmacology</topic><topic>Interleukin-4 - pharmacology</topic><topic>Intestines - immunology</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Peyer's Patches - immunology</topic><topic>RALDH</topic><topic>Receptors, Interleukin-4 - genetics</topic><topic>Receptors, Interleukin-4 - metabolism</topic><topic>regulatory T</topic><topic>T-Lymphocytes, Regulatory - immunology</topic><topic>T-Lymphocytes, Regulatory - metabolism</topic><topic>Th17</topic><topic>Tretinoin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yokota, Aya</creatorcontrib><creatorcontrib>Takeuchi, Hajime</creatorcontrib><creatorcontrib>Maeda, Naoko</creatorcontrib><creatorcontrib>Ohoka, Yoshiharu</creatorcontrib><creatorcontrib>Kato, Chieko</creatorcontrib><creatorcontrib>Song, Si-Young</creatorcontrib><creatorcontrib>Iwata, Makoto</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yokota, Aya</au><au>Takeuchi, Hajime</au><au>Maeda, Naoko</au><au>Ohoka, Yoshiharu</au><au>Kato, Chieko</au><au>Song, Si-Young</au><au>Iwata, Makoto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GM-CSF and IL-4 synergistically trigger dendritic cells to acquire retinoic acid-producing capacity</atitle><jtitle>International immunology</jtitle><addtitle>Int Immunol</addtitle><date>2009-04-01</date><risdate>2009</risdate><volume>21</volume><issue>4</issue><spage>361</spage><epage>377</epage><pages>361-377</pages><issn>0953-8178</issn><eissn>1460-2377</eissn><abstract>Retinoic acid (RA) produced by intestinal dendritic cells (DCs) imprints gut-homing specificity on lymphocytes and enhances Foxp3+ regulatory T-cell differentiation. The expression of aldehyde dehydrogenase (ALDH) 1A in these DCs is essential for the RA production. However, it remains unclear how the steady-state ALDH1A expression is induced under specific pathogen-free (SPF) conditions. Here, we found that bone marrow-derived dendritic cells (BM-DCs) generated with granulocyte-macrophage colony-stimulating factor (GM-CSF) expressed Aldh1a2, an isoform of Aldh1a, but that fms-related tyrosine kinase 3 ligand-generated BM-DCs did not. DCs from mesenteric lymph nodes (MLN) and Peyer's patches (PP) of normal SPF mice expressed ALDH1A2, but not the other known RA-producing enzymes. Employing a flow cytometric method, we detected ALDH activities in 10–30% of PP-DCs and MLN-DCs. They were CD11chighCD4−/lowCD8αintermediateCD11b−/low F4/80low/intermediateCD45RBlowCD86highMHC class IIhighB220−CD103+. Equivalent levels of aldehyde dehydrogenase activity (ALDHact) and ALDH1A2 expression were induced synergistically by GM-CSF and IL-4 in splenic DCs in vitro. In BM-DCs, however, additional signals via Toll-like receptors or RA receptors were required for inducing the equivalent levels. The generated ALDH1A2+ DCs triggered T cells to express gut-homing receptors or Foxp3. GM-CSF receptor-deficient or vitamin A-deficient mice exhibited marked reductions in the ALDHact in intestinal DCs and the T cell number in the intestinal lamina propria, whereas IL-4 receptor-mediated signals were dispensable. GM-CSF+CD11c−F4/80+ cells existed constitutively in the intestinal tissues. The results suggest that GM-CSF and RA itself are pivotal among multiple microenvironment factors that enable intestinal DCs to produce RA.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>19190084</pmid><doi>10.1093/intimm/dxp003</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8178 |
ispartof | International immunology, 2009-04, Vol.21 (4), p.361-377 |
issn | 0953-8178 1460-2377 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2660862 |
source | Oxford Journals Online |
subjects | Aldehyde Dehydrogenase - biosynthesis Aldehyde Dehydrogenase - genetics Animals Cells, Cultured Coculture Techniques Dendritic Cells - drug effects Dendritic Cells - immunology Dendritic Cells - metabolism fms-Like Tyrosine Kinase 3 - pharmacology Granulocyte-Macrophage Colony-Stimulating Factor - pharmacology gut homing Interleukin-13 - pharmacology Interleukin-4 - pharmacology Intestines - immunology Mice Mice, Inbred BALB C Mice, Inbred C57BL Mice, Knockout Peyer's Patches - immunology RALDH Receptors, Interleukin-4 - genetics Receptors, Interleukin-4 - metabolism regulatory T T-Lymphocytes, Regulatory - immunology T-Lymphocytes, Regulatory - metabolism Th17 Tretinoin - metabolism |
title | GM-CSF and IL-4 synergistically trigger dendritic cells to acquire retinoic acid-producing capacity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A21%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GM-CSF%20and%20IL-4%20synergistically%20trigger%20dendritic%20cells%20to%20acquire%20retinoic%20acid-producing%20capacity&rft.jtitle=International%20immunology&rft.au=Yokota,%20Aya&rft.date=2009-04-01&rft.volume=21&rft.issue=4&rft.spage=361&rft.epage=377&rft.pages=361-377&rft.issn=0953-8178&rft.eissn=1460-2377&rft_id=info:doi/10.1093/intimm/dxp003&rft_dat=%3Cproquest_pubme%3E67072385%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c677t-21c59a864c7075e6152b4fd5375fbe5c987ea94a05e7525d3b02803763bdaae33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195023141&rft_id=info:pmid/19190084&rft_oup_id=10.1093/intimm/dxp003&rfr_iscdi=true |