Loading…

Mechanisms of Inhaled Fine Particulate Air Pollution-Induced Arterial Blood Pressure Changes

Background: Epidemiologic studies suggest a positive association between fine particulate matter and arterial blood pressure, but the results have been inconsistent. Objectives: We investigated the effect of ambient particles on systemic hemodynamics during a 5-hr exposure to concentrated ambient ai...

Full description

Saved in:
Bibliographic Details
Published in:Environmental health perspectives 2009-03, Vol.117 (3), p.361-366
Main Authors: Bartoli, Carlo R., Wellenius, Gregory A., Diaz, Edgar A., Lawrence, Joy, Coull, Brent A., Akiyama, Ichiro, Lee, Lani M., Okabe, Kazunori, Verrier, Richard L., Godleski, John J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Epidemiologic studies suggest a positive association between fine particulate matter and arterial blood pressure, but the results have been inconsistent. Objectives: We investigated the effect of ambient particles on systemic hemodynamics during a 5-hr exposure to concentrated ambient air particles (CAPs) or filtered air (FA) in conscious canines. Methods: Thirteen dogs were repeatedly exposed via permanent tracheostomy to CAPs (358.1 ± 306.7 μg/m³, mean ± SD) or FA in a crossover protocol (55 CAPs days, 63 FA days). Femoral artery blood pressure was monitored continuously via implanted telemetry devices. We measured baroreceptor reflex sensitivity before and after exposure in a subset of these experiments (n = 10 dogs, 19 CAPs days, 20 FA days). In additional experiments, we administered α-adrenergic blockade before exposure (n = 8 dogs, 16 CAPs days, 15 FA days). Blood pressure, heart rate, rate-pressure product, and baroreceptor reflex sensitivity responses were compared using linear mixed-effects models. Results: CAPs exposure increased systolic blood pressure (2.7 ± 1.0 mmHg, p = 0.006), diastolic blood pressure (4.1 ± 0.8 mmHg; p < 0.001), mean arterial pressure (3.7 ± 0.8 mmHg; p < 0.001), heart rate (1.6 ± 0.5 bpm; p < 0.001), and rate-pressure product (539 ± 110 bpm × mmHg; p < 0.001), and decreased pulse pressure (-1.7 ± 0.7 mmHg, p = 0.02). These changes were accompanied by a 20 ± 6 msec/mmHg (p = 0.005) increase in baroreceptor reflex sensitivity after CAPs versus FA. After α-adrenergic blockade, responses to CAPs and FA no longer differed significantly. Conclusions: Controlled exposure to ambient particles elevates arterial blood pressure. Increased peripheral vascular resistance may mediate these changes, whereas increased baroreceptor reflex sensitivity may compensate for particle-induced alterations in blood pressure.
ISSN:0091-6765
1552-9924
DOI:10.1289/ehp.11573