Loading…
Phosphorylation of the Translation Initiation Factor eIF2α Increases BACE1 Levels and Promotes Amyloidogenesis
β-site APP cleaving enzyme-1 (BACE1), the rate-limiting enzyme for β-amyloid (Aβ) production, is elevated in Alzheimer's disease (AD). Here, we show that energy deprivation induces phosphorylation of the translation initiation factor eIF2α (eIF2α-P), which increases the translation of BACE1. Sa...
Saved in:
Published in: | Neuron (Cambridge, Mass.) Mass.), 2008-12, Vol.60 (6), p.988-1009 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | β-site APP cleaving enzyme-1 (BACE1), the rate-limiting enzyme for β-amyloid (Aβ) production, is elevated in Alzheimer's disease (AD). Here, we show that energy deprivation induces phosphorylation of the translation initiation factor eIF2α (eIF2α-P), which increases the translation of BACE1. Salubrinal, an inhibitor of eIF2α-P phosphatase PP1c, directly increases BACE1 and elevates Aβ production in primary neurons. Preventing eIF2α phosphorylation by transfection with constitutively active PP1c regulatory subunit, dominant-negative eIF2α kinase PERK, or PERK inhibitor P58
IPK blocks the energy-deprivation-induced BACE1 increase. Furthermore, chronic treatment of aged Tg2576 mice with energy inhibitors increases levels of eIF2α-P, BACE1, Aβ, and amyloid plaques. Importantly, eIF2α-P and BACE1 are elevated in aggressive plaque-forming 5XFAD transgenic mice, and BACE1, eIF2α-P, and amyloid load are correlated in humans with AD. These results strongly suggest that eIF2α phosphorylation increases BACE1 levels and causes Aβ overproduction, which could be an early, initiating molecular mechanism in sporadic AD. |
---|---|
ISSN: | 0896-6273 1097-4199 |
DOI: | 10.1016/j.neuron.2008.10.047 |