Loading…

Transient gain adjustment in the inferior colliculus is serotonin- and calcium-dependent

In the inferior colliculus (IC), a brief period of acoustic conditioning can transiently enhance evoked discharge rate. The cellular basis of this phenomenon was assessed with whole cell current-clamp recordings in a gerbil IC brain slice preparation. The current needed to elicit a single action pot...

Full description

Saved in:
Bibliographic Details
Published in:Hearing research 2009-05, Vol.251 (1), p.39-50
Main Authors: Miko, Ilona J., Sanes, Dan H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c522t-6564727df4753bb72ea16e6362a47ac4d869b6a2044f6449a9a352946ed464c73
cites cdi_FETCH-LOGICAL-c522t-6564727df4753bb72ea16e6362a47ac4d869b6a2044f6449a9a352946ed464c73
container_end_page 50
container_issue 1
container_start_page 39
container_title Hearing research
container_volume 251
creator Miko, Ilona J.
Sanes, Dan H.
description In the inferior colliculus (IC), a brief period of acoustic conditioning can transiently enhance evoked discharge rate. The cellular basis of this phenomenon was assessed with whole cell current-clamp recordings in a gerbil IC brain slice preparation. The current needed to elicit a single action potential was first established for each neuron. A 5s synaptic stimulus train was delivered to the lateral lemniscus (LL), and followed immediately by the initial current pulse to assess a change in postsynaptic gain. The majority of IC neurons (66%) displayed an increase in current-evoked action potentials (Positive Gain). Despite the blockade of ionotropic glutamate receptors, this effect was correlated with membrane depolarization that occurred during the synaptic train. The postsynaptic mechanism for positive gain was examined by selective blockade of specific neurotransmitter receptors. Gain in action potentials was enhanced by antagonists of metabotropic glutamate, acetylcholine, GABA A and glycine receptors. In contrast, the gain was blocked or reduced by an antagonist to ionotropic serotonin receptors (5-HT 3R). Blocking voltage-activated calcium channels with verapamil also reduced the effect. These results suggest that 5-HT 3R activation, coupled with increased intracellular calcium, can transiently alter postsynaptic excitability in IC neurons.
doi_str_mv 10.1016/j.heares.2009.02.003
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2670942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037859550900032X</els_id><sourcerecordid>20084316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-6564727df4753bb72ea16e6362a47ac4d869b6a2044f6449a9a352946ed464c73</originalsourceid><addsrcrecordid>eNqFkUtr3DAUhUVpaKZp_0Ep3rQ7O3rL2hRK6AsC2STQndBI1xkNtjSV7ED-fWVmSNpNu7q66Jyrq_Mh9I7gjmAiL_fdDmyG0lGMdYdphzF7gTakV30rek1eog1m61kLcY5el7LHmAjG6St0TjRlVDCxQT9vs40lQJybextiY_1-KfO09rWbd1DLADmk3Lg0jsEt41KaUJoCOc0phtg2NvrG2dGFZWo9HCD6an-DzgY7Fnh7qhfo7uuX26vv7fXNtx9Xn69bJyidWykkV1T5gSvBtltFwRIJkklqubKO-17qrbQUcz5IzrXVlgmquQTPJXeKXaBPx7mHZTuBd_XpbEdzyGGy-dEkG8zfNzHszH16MFQqrDmtAz6eBuT0a4EymykUB-NoI6SlGKkIk1rJ_worh54zsgr5UehyKiXD8LQNwWZlZ_bmyG71aIOpqeyq7f2fP3k2nWBVwYeTwJaa91DJuVCedJRwQRnRz5FAzf0hQDbFVcIOfMjgZuNT-PcmvwE_3rqk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20084316</pqid></control><display><type>article</type><title>Transient gain adjustment in the inferior colliculus is serotonin- and calcium-dependent</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Miko, Ilona J. ; Sanes, Dan H.</creator><creatorcontrib>Miko, Ilona J. ; Sanes, Dan H.</creatorcontrib><description>In the inferior colliculus (IC), a brief period of acoustic conditioning can transiently enhance evoked discharge rate. The cellular basis of this phenomenon was assessed with whole cell current-clamp recordings in a gerbil IC brain slice preparation. The current needed to elicit a single action potential was first established for each neuron. A 5s synaptic stimulus train was delivered to the lateral lemniscus (LL), and followed immediately by the initial current pulse to assess a change in postsynaptic gain. The majority of IC neurons (66%) displayed an increase in current-evoked action potentials (Positive Gain). Despite the blockade of ionotropic glutamate receptors, this effect was correlated with membrane depolarization that occurred during the synaptic train. The postsynaptic mechanism for positive gain was examined by selective blockade of specific neurotransmitter receptors. Gain in action potentials was enhanced by antagonists of metabotropic glutamate, acetylcholine, GABA A and glycine receptors. In contrast, the gain was blocked or reduced by an antagonist to ionotropic serotonin receptors (5-HT 3R). Blocking voltage-activated calcium channels with verapamil also reduced the effect. These results suggest that 5-HT 3R activation, coupled with increased intracellular calcium, can transiently alter postsynaptic excitability in IC neurons.</description><identifier>ISSN: 0378-5955</identifier><identifier>EISSN: 1878-5891</identifier><identifier>DOI: 10.1016/j.heares.2009.02.003</identifier><identifier>PMID: 19232535</identifier><identifier>CODEN: HERED3</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>5-HT 3 receptor ; Action Potentials - drug effects ; Action Potentials - physiology ; Anesthetics. Neuromuscular blocking agents ; Animals ; Bicuculline - pharmacology ; Biological and medical sciences ; Calcium - physiology ; Calcium Channel Blockers - pharmacology ; Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation ; Excitatory Amino Acid Antagonists - pharmacology ; Fundamental and applied biological sciences. Psychology ; GABA Antagonists - pharmacology ; GABA-A Receptor Antagonists ; Gerbillinae ; Inferior Colliculi - cytology ; Inferior Colliculi - physiology ; Inferior colliculus ; Medical sciences ; Neurons - physiology ; Neuropharmacology ; Organ Culture Techniques ; Patch-Clamp Techniques ; Pharmacology. Drug treatments ; Quinoxalines - pharmacology ; Receptors, GABA-A - physiology ; Receptors, Glutamate - physiology ; Receptors, Glycine - antagonists &amp; inhibitors ; Receptors, Glycine - physiology ; Receptors, Serotonin, 5-HT3 - physiology ; Serotonin ; Serotonin - physiology ; Serotonin 5-HT3 Receptor Antagonists ; Serotonin Antagonists - pharmacology ; Synaptic plasticity ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology ; Vertebrates: nervous system and sense organs</subject><ispartof>Hearing research, 2009-05, Vol.251 (1), p.39-50</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-6564727df4753bb72ea16e6362a47ac4d869b6a2044f6449a9a352946ed464c73</citedby><cites>FETCH-LOGICAL-c522t-6564727df4753bb72ea16e6362a47ac4d869b6a2044f6449a9a352946ed464c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21452319$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19232535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miko, Ilona J.</creatorcontrib><creatorcontrib>Sanes, Dan H.</creatorcontrib><title>Transient gain adjustment in the inferior colliculus is serotonin- and calcium-dependent</title><title>Hearing research</title><addtitle>Hear Res</addtitle><description>In the inferior colliculus (IC), a brief period of acoustic conditioning can transiently enhance evoked discharge rate. The cellular basis of this phenomenon was assessed with whole cell current-clamp recordings in a gerbil IC brain slice preparation. The current needed to elicit a single action potential was first established for each neuron. A 5s synaptic stimulus train was delivered to the lateral lemniscus (LL), and followed immediately by the initial current pulse to assess a change in postsynaptic gain. The majority of IC neurons (66%) displayed an increase in current-evoked action potentials (Positive Gain). Despite the blockade of ionotropic glutamate receptors, this effect was correlated with membrane depolarization that occurred during the synaptic train. The postsynaptic mechanism for positive gain was examined by selective blockade of specific neurotransmitter receptors. Gain in action potentials was enhanced by antagonists of metabotropic glutamate, acetylcholine, GABA A and glycine receptors. In contrast, the gain was blocked or reduced by an antagonist to ionotropic serotonin receptors (5-HT 3R). Blocking voltage-activated calcium channels with verapamil also reduced the effect. These results suggest that 5-HT 3R activation, coupled with increased intracellular calcium, can transiently alter postsynaptic excitability in IC neurons.</description><subject>5-HT 3 receptor</subject><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Anesthetics. Neuromuscular blocking agents</subject><subject>Animals</subject><subject>Bicuculline - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Calcium - physiology</subject><subject>Calcium Channel Blockers - pharmacology</subject><subject>Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GABA Antagonists - pharmacology</subject><subject>GABA-A Receptor Antagonists</subject><subject>Gerbillinae</subject><subject>Inferior Colliculi - cytology</subject><subject>Inferior Colliculi - physiology</subject><subject>Inferior colliculus</subject><subject>Medical sciences</subject><subject>Neurons - physiology</subject><subject>Neuropharmacology</subject><subject>Organ Culture Techniques</subject><subject>Patch-Clamp Techniques</subject><subject>Pharmacology. Drug treatments</subject><subject>Quinoxalines - pharmacology</subject><subject>Receptors, GABA-A - physiology</subject><subject>Receptors, Glutamate - physiology</subject><subject>Receptors, Glycine - antagonists &amp; inhibitors</subject><subject>Receptors, Glycine - physiology</subject><subject>Receptors, Serotonin, 5-HT3 - physiology</subject><subject>Serotonin</subject><subject>Serotonin - physiology</subject><subject>Serotonin 5-HT3 Receptor Antagonists</subject><subject>Serotonin Antagonists - pharmacology</subject><subject>Synaptic plasticity</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0378-5955</issn><issn>1878-5891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkUtr3DAUhUVpaKZp_0Ep3rQ7O3rL2hRK6AsC2STQndBI1xkNtjSV7ED-fWVmSNpNu7q66Jyrq_Mh9I7gjmAiL_fdDmyG0lGMdYdphzF7gTakV30rek1eog1m61kLcY5el7LHmAjG6St0TjRlVDCxQT9vs40lQJybextiY_1-KfO09rWbd1DLADmk3Lg0jsEt41KaUJoCOc0phtg2NvrG2dGFZWo9HCD6an-DzgY7Fnh7qhfo7uuX26vv7fXNtx9Xn69bJyidWykkV1T5gSvBtltFwRIJkklqubKO-17qrbQUcz5IzrXVlgmquQTPJXeKXaBPx7mHZTuBd_XpbEdzyGGy-dEkG8zfNzHszH16MFQqrDmtAz6eBuT0a4EymykUB-NoI6SlGKkIk1rJ_worh54zsgr5UehyKiXD8LQNwWZlZ_bmyG71aIOpqeyq7f2fP3k2nWBVwYeTwJaa91DJuVCedJRwQRnRz5FAzf0hQDbFVcIOfMjgZuNT-PcmvwE_3rqk</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Miko, Ilona J.</creator><creator>Sanes, Dan H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090501</creationdate><title>Transient gain adjustment in the inferior colliculus is serotonin- and calcium-dependent</title><author>Miko, Ilona J. ; Sanes, Dan H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-6564727df4753bb72ea16e6362a47ac4d869b6a2044f6449a9a352946ed464c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>5-HT 3 receptor</topic><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Anesthetics. Neuromuscular blocking agents</topic><topic>Animals</topic><topic>Bicuculline - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Calcium - physiology</topic><topic>Calcium Channel Blockers - pharmacology</topic><topic>Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GABA Antagonists - pharmacology</topic><topic>GABA-A Receptor Antagonists</topic><topic>Gerbillinae</topic><topic>Inferior Colliculi - cytology</topic><topic>Inferior Colliculi - physiology</topic><topic>Inferior colliculus</topic><topic>Medical sciences</topic><topic>Neurons - physiology</topic><topic>Neuropharmacology</topic><topic>Organ Culture Techniques</topic><topic>Patch-Clamp Techniques</topic><topic>Pharmacology. Drug treatments</topic><topic>Quinoxalines - pharmacology</topic><topic>Receptors, GABA-A - physiology</topic><topic>Receptors, Glutamate - physiology</topic><topic>Receptors, Glycine - antagonists &amp; inhibitors</topic><topic>Receptors, Glycine - physiology</topic><topic>Receptors, Serotonin, 5-HT3 - physiology</topic><topic>Serotonin</topic><topic>Serotonin - physiology</topic><topic>Serotonin 5-HT3 Receptor Antagonists</topic><topic>Serotonin Antagonists - pharmacology</topic><topic>Synaptic plasticity</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miko, Ilona J.</creatorcontrib><creatorcontrib>Sanes, Dan H.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Hearing research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miko, Ilona J.</au><au>Sanes, Dan H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient gain adjustment in the inferior colliculus is serotonin- and calcium-dependent</atitle><jtitle>Hearing research</jtitle><addtitle>Hear Res</addtitle><date>2009-05-01</date><risdate>2009</risdate><volume>251</volume><issue>1</issue><spage>39</spage><epage>50</epage><pages>39-50</pages><issn>0378-5955</issn><eissn>1878-5891</eissn><coden>HERED3</coden><abstract>In the inferior colliculus (IC), a brief period of acoustic conditioning can transiently enhance evoked discharge rate. The cellular basis of this phenomenon was assessed with whole cell current-clamp recordings in a gerbil IC brain slice preparation. The current needed to elicit a single action potential was first established for each neuron. A 5s synaptic stimulus train was delivered to the lateral lemniscus (LL), and followed immediately by the initial current pulse to assess a change in postsynaptic gain. The majority of IC neurons (66%) displayed an increase in current-evoked action potentials (Positive Gain). Despite the blockade of ionotropic glutamate receptors, this effect was correlated with membrane depolarization that occurred during the synaptic train. The postsynaptic mechanism for positive gain was examined by selective blockade of specific neurotransmitter receptors. Gain in action potentials was enhanced by antagonists of metabotropic glutamate, acetylcholine, GABA A and glycine receptors. In contrast, the gain was blocked or reduced by an antagonist to ionotropic serotonin receptors (5-HT 3R). Blocking voltage-activated calcium channels with verapamil also reduced the effect. These results suggest that 5-HT 3R activation, coupled with increased intracellular calcium, can transiently alter postsynaptic excitability in IC neurons.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>19232535</pmid><doi>10.1016/j.heares.2009.02.003</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-5955
ispartof Hearing research, 2009-05, Vol.251 (1), p.39-50
issn 0378-5955
1878-5891
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2670942
source ScienceDirect Freedom Collection 2022-2024
subjects 5-HT 3 receptor
Action Potentials - drug effects
Action Potentials - physiology
Anesthetics. Neuromuscular blocking agents
Animals
Bicuculline - pharmacology
Biological and medical sciences
Calcium - physiology
Calcium Channel Blockers - pharmacology
Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation
Excitatory Amino Acid Antagonists - pharmacology
Fundamental and applied biological sciences. Psychology
GABA Antagonists - pharmacology
GABA-A Receptor Antagonists
Gerbillinae
Inferior Colliculi - cytology
Inferior Colliculi - physiology
Inferior colliculus
Medical sciences
Neurons - physiology
Neuropharmacology
Organ Culture Techniques
Patch-Clamp Techniques
Pharmacology. Drug treatments
Quinoxalines - pharmacology
Receptors, GABA-A - physiology
Receptors, Glutamate - physiology
Receptors, Glycine - antagonists & inhibitors
Receptors, Glycine - physiology
Receptors, Serotonin, 5-HT3 - physiology
Serotonin
Serotonin - physiology
Serotonin 5-HT3 Receptor Antagonists
Serotonin Antagonists - pharmacology
Synaptic plasticity
Synaptic Transmission - drug effects
Synaptic Transmission - physiology
Vertebrates: nervous system and sense organs
title Transient gain adjustment in the inferior colliculus is serotonin- and calcium-dependent
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A17%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20gain%20adjustment%20in%20the%20inferior%20colliculus%20is%20serotonin-%20and%20calcium-dependent&rft.jtitle=Hearing%20research&rft.au=Miko,%20Ilona%20J.&rft.date=2009-05-01&rft.volume=251&rft.issue=1&rft.spage=39&rft.epage=50&rft.pages=39-50&rft.issn=0378-5955&rft.eissn=1878-5891&rft.coden=HERED3&rft_id=info:doi/10.1016/j.heares.2009.02.003&rft_dat=%3Cproquest_pubme%3E20084316%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c522t-6564727df4753bb72ea16e6362a47ac4d869b6a2044f6449a9a352946ed464c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20084316&rft_id=info:pmid/19232535&rfr_iscdi=true