Loading…

Responses of thoracic spinal interneurons to vestibular stimulation

Vestibular influences on outflow from the spinal cord are largely mediated via spinal interneurons, although few studies have recorded interneuronal activity during labyrinthine stimulation. The present study determined the responses of upper thoracic interneurons of decerebrate cats to electrical s...

Full description

Saved in:
Bibliographic Details
Published in:Experimental brain research 2009-05, Vol.195 (1), p.89-100
Main Authors: Miller, D. M, Reighard, D. A, Mehta, Amar S, Mehta, Ajeet S, Kalash, R, Yates, B. J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c585t-64578018dfa31c80cbbe250b31788795460dab16d7e27332f2cc06bc2b2861a73
cites cdi_FETCH-LOGICAL-c585t-64578018dfa31c80cbbe250b31788795460dab16d7e27332f2cc06bc2b2861a73
container_end_page 100
container_issue 1
container_start_page 89
container_title Experimental brain research
container_volume 195
creator Miller, D. M
Reighard, D. A
Mehta, Amar S
Mehta, Ajeet S
Kalash, R
Yates, B. J
description Vestibular influences on outflow from the spinal cord are largely mediated via spinal interneurons, although few studies have recorded interneuronal activity during labyrinthine stimulation. The present study determined the responses of upper thoracic interneurons of decerebrate cats to electrical stimulation of the vestibular nerve or natural stimulation of otolith organs and the anterior and posterior semicircular canals using rotations in vertical planes. A majority of thoracic interneurons (74/102) responded to vestibular nerve stimulation at median latencies of 6.5 ms (minimum of ~3 ms), suggesting that labyrinthine inputs were relayed to these neurons through trisynaptic and longer pathways. Thoracic interneuronal responses to vertical rotations were similar to those of graviceptors such as otolith organs, and a wide array of tilt directions preferentially activated different cells. Such responses were distinct from those of cells in the cervical and lumbar enlargements, which are mainly elicited by ear-down tilts and are synchronous with stimulus position when low rotational frequencies are delivered, but tend to be in phase with stimulus velocity when high frequencies are employed. The dynamic properties of thoracic interneuronal responses to tilts were instead similar to those of thoracic motoneurons and sympathetic preganglionic neurons. However, the preferred tilt directions of the interneurons were more heterogeneous than thoracic spinal outputs, showing that the outputs do not simply reflect an addition of local interneuronal activity.
doi_str_mv 10.1007/s00221-009-1754-0
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2675666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1694250591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-64578018dfa31c80cbbe250b31788795460dab16d7e27332f2cc06bc2b2861a73</originalsourceid><addsrcrecordid>eNqFkd9rFDEQx4NY7PX0D_BFF0HfVmeSzY99EeSwWigIap9DNpe9puwlZ7Jb8L83yx6t9qGSh0yYz3xnJl9CXiK8RwD5IQNQijVAW6PkTQ1PyAobRmtEEE_JCgCbulHYnpKznG_mJ5PwjJxiSxUr4Ypsvrt8iCG7XMW-Gq9jMtbbKh98MEPlw-hScFMqRDXG6tbl0XfTYFJVgn0JRh_Dc3LSmyG7F8d7Ta7OP__cfK0vv3252Hy6rC1XfKxFw6UCVNveMLQKbNc5yqFjKJWSLW8EbE2HYisdlYzRnloLorO0o0qgkWxNPi66h6nbu611YUxm0Ifk9yb91tF4_W8m-Gu9i7eaCsmFEEXg3VEgxV9T2UXvfbZuGExwccpaSFS8ZfK_IIWC0XLW5M0D8CZOqXxdYZAjYy3MEC6QTTHn5Pq7kRH0bKRejNTFSD0bqaHUvPp71_uKo3MFeHsETLZm6JMJ1uc7jmKDwOXcnC5cLqmwc-l-wse6v16KehO12aUifPWDAjJAQbkAxf4Af6i-vQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215133902</pqid></control><display><type>article</type><title>Responses of thoracic spinal interneurons to vestibular stimulation</title><source>Springer Nature</source><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><creator>Miller, D. M ; Reighard, D. A ; Mehta, Amar S ; Mehta, Ajeet S ; Kalash, R ; Yates, B. J</creator><creatorcontrib>Miller, D. M ; Reighard, D. A ; Mehta, Amar S ; Mehta, Ajeet S ; Kalash, R ; Yates, B. J</creatorcontrib><description>Vestibular influences on outflow from the spinal cord are largely mediated via spinal interneurons, although few studies have recorded interneuronal activity during labyrinthine stimulation. The present study determined the responses of upper thoracic interneurons of decerebrate cats to electrical stimulation of the vestibular nerve or natural stimulation of otolith organs and the anterior and posterior semicircular canals using rotations in vertical planes. A majority of thoracic interneurons (74/102) responded to vestibular nerve stimulation at median latencies of 6.5 ms (minimum of ~3 ms), suggesting that labyrinthine inputs were relayed to these neurons through trisynaptic and longer pathways. Thoracic interneuronal responses to vertical rotations were similar to those of graviceptors such as otolith organs, and a wide array of tilt directions preferentially activated different cells. Such responses were distinct from those of cells in the cervical and lumbar enlargements, which are mainly elicited by ear-down tilts and are synchronous with stimulus position when low rotational frequencies are delivered, but tend to be in phase with stimulus velocity when high frequencies are employed. The dynamic properties of thoracic interneuronal responses to tilts were instead similar to those of thoracic motoneurons and sympathetic preganglionic neurons. However, the preferred tilt directions of the interneurons were more heterogeneous than thoracic spinal outputs, showing that the outputs do not simply reflect an addition of local interneuronal activity.</description><identifier>ISSN: 0014-4819</identifier><identifier>EISSN: 1432-1106</identifier><identifier>DOI: 10.1007/s00221-009-1754-0</identifier><identifier>PMID: 19283370</identifier><identifier>CODEN: EXBRAP</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Action Potentials - physiology ; Afferent Pathways - physiology ; Animals ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedicine ; Biophysics ; Cats ; Decerebrate State - physiopathology ; Electric Stimulation - methods ; Fundamental and applied biological sciences. Psychology ; Interneurons - physiology ; Laboratory animals ; Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration ; Nervous system ; Neurology ; Neurons ; Neurosciences ; Peripheral nervous system. Autonomic nervous system. Neuromuscular transmission. Ganglionic transmission. Electric organ ; Reaction Time - physiology ; Reflex, Vestibulo-Ocular - physiology ; Research Article ; Spinal cord ; Spinal Cord - cytology ; Vertebrates: nervous system and sense organs ; Vestibular Nerve - physiology</subject><ispartof>Experimental brain research, 2009-05, Vol.195 (1), p.89-100</ispartof><rights>Springer-Verlag 2009</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-64578018dfa31c80cbbe250b31788795460dab16d7e27332f2cc06bc2b2861a73</citedby><cites>FETCH-LOGICAL-c585t-64578018dfa31c80cbbe250b31788795460dab16d7e27332f2cc06bc2b2861a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/215133902/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/215133902?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,776,780,881,21374,27903,27904,33590,33591,43712,73968</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21410572$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19283370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miller, D. M</creatorcontrib><creatorcontrib>Reighard, D. A</creatorcontrib><creatorcontrib>Mehta, Amar S</creatorcontrib><creatorcontrib>Mehta, Ajeet S</creatorcontrib><creatorcontrib>Kalash, R</creatorcontrib><creatorcontrib>Yates, B. J</creatorcontrib><title>Responses of thoracic spinal interneurons to vestibular stimulation</title><title>Experimental brain research</title><addtitle>Exp Brain Res</addtitle><addtitle>Exp Brain Res</addtitle><description>Vestibular influences on outflow from the spinal cord are largely mediated via spinal interneurons, although few studies have recorded interneuronal activity during labyrinthine stimulation. The present study determined the responses of upper thoracic interneurons of decerebrate cats to electrical stimulation of the vestibular nerve or natural stimulation of otolith organs and the anterior and posterior semicircular canals using rotations in vertical planes. A majority of thoracic interneurons (74/102) responded to vestibular nerve stimulation at median latencies of 6.5 ms (minimum of ~3 ms), suggesting that labyrinthine inputs were relayed to these neurons through trisynaptic and longer pathways. Thoracic interneuronal responses to vertical rotations were similar to those of graviceptors such as otolith organs, and a wide array of tilt directions preferentially activated different cells. Such responses were distinct from those of cells in the cervical and lumbar enlargements, which are mainly elicited by ear-down tilts and are synchronous with stimulus position when low rotational frequencies are delivered, but tend to be in phase with stimulus velocity when high frequencies are employed. The dynamic properties of thoracic interneuronal responses to tilts were instead similar to those of thoracic motoneurons and sympathetic preganglionic neurons. However, the preferred tilt directions of the interneurons were more heterogeneous than thoracic spinal outputs, showing that the outputs do not simply reflect an addition of local interneuronal activity.</description><subject>Action Potentials - physiology</subject><subject>Afferent Pathways - physiology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Cats</subject><subject>Decerebrate State - physiopathology</subject><subject>Electric Stimulation - methods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Interneurons - physiology</subject><subject>Laboratory animals</subject><subject>Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration</subject><subject>Nervous system</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Peripheral nervous system. Autonomic nervous system. Neuromuscular transmission. Ganglionic transmission. Electric organ</subject><subject>Reaction Time - physiology</subject><subject>Reflex, Vestibulo-Ocular - physiology</subject><subject>Research Article</subject><subject>Spinal cord</subject><subject>Spinal Cord - cytology</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Vestibular Nerve - physiology</subject><issn>0014-4819</issn><issn>1432-1106</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>M2R</sourceid><recordid>eNqFkd9rFDEQx4NY7PX0D_BFF0HfVmeSzY99EeSwWigIap9DNpe9puwlZ7Jb8L83yx6t9qGSh0yYz3xnJl9CXiK8RwD5IQNQijVAW6PkTQ1PyAobRmtEEE_JCgCbulHYnpKznG_mJ5PwjJxiSxUr4Ypsvrt8iCG7XMW-Gq9jMtbbKh98MEPlw-hScFMqRDXG6tbl0XfTYFJVgn0JRh_Dc3LSmyG7F8d7Ta7OP__cfK0vv3252Hy6rC1XfKxFw6UCVNveMLQKbNc5yqFjKJWSLW8EbE2HYisdlYzRnloLorO0o0qgkWxNPi66h6nbu611YUxm0Ifk9yb91tF4_W8m-Gu9i7eaCsmFEEXg3VEgxV9T2UXvfbZuGExwccpaSFS8ZfK_IIWC0XLW5M0D8CZOqXxdYZAjYy3MEC6QTTHn5Pq7kRH0bKRejNTFSD0bqaHUvPp71_uKo3MFeHsETLZm6JMJ1uc7jmKDwOXcnC5cLqmwc-l-wse6v16KehO12aUifPWDAjJAQbkAxf4Af6i-vQ</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Miller, D. M</creator><creator>Reighard, D. A</creator><creator>Mehta, Amar S</creator><creator>Mehta, Ajeet S</creator><creator>Kalash, R</creator><creator>Yates, B. J</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>88J</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2R</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090501</creationdate><title>Responses of thoracic spinal interneurons to vestibular stimulation</title><author>Miller, D. M ; Reighard, D. A ; Mehta, Amar S ; Mehta, Ajeet S ; Kalash, R ; Yates, B. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-64578018dfa31c80cbbe250b31788795460dab16d7e27332f2cc06bc2b2861a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Action Potentials - physiology</topic><topic>Afferent Pathways - physiology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Cats</topic><topic>Decerebrate State - physiopathology</topic><topic>Electric Stimulation - methods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Interneurons - physiology</topic><topic>Laboratory animals</topic><topic>Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration</topic><topic>Nervous system</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Peripheral nervous system. Autonomic nervous system. Neuromuscular transmission. Ganglionic transmission. Electric organ</topic><topic>Reaction Time - physiology</topic><topic>Reflex, Vestibulo-Ocular - physiology</topic><topic>Research Article</topic><topic>Spinal cord</topic><topic>Spinal Cord - cytology</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Vestibular Nerve - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, D. M</creatorcontrib><creatorcontrib>Reighard, D. A</creatorcontrib><creatorcontrib>Mehta, Amar S</creatorcontrib><creatorcontrib>Mehta, Ajeet S</creatorcontrib><creatorcontrib>Kalash, R</creatorcontrib><creatorcontrib>Yates, B. J</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>Social Science Database (ProQuest)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, D. M</au><au>Reighard, D. A</au><au>Mehta, Amar S</au><au>Mehta, Ajeet S</au><au>Kalash, R</au><au>Yates, B. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Responses of thoracic spinal interneurons to vestibular stimulation</atitle><jtitle>Experimental brain research</jtitle><stitle>Exp Brain Res</stitle><addtitle>Exp Brain Res</addtitle><date>2009-05-01</date><risdate>2009</risdate><volume>195</volume><issue>1</issue><spage>89</spage><epage>100</epage><pages>89-100</pages><issn>0014-4819</issn><eissn>1432-1106</eissn><coden>EXBRAP</coden><abstract>Vestibular influences on outflow from the spinal cord are largely mediated via spinal interneurons, although few studies have recorded interneuronal activity during labyrinthine stimulation. The present study determined the responses of upper thoracic interneurons of decerebrate cats to electrical stimulation of the vestibular nerve or natural stimulation of otolith organs and the anterior and posterior semicircular canals using rotations in vertical planes. A majority of thoracic interneurons (74/102) responded to vestibular nerve stimulation at median latencies of 6.5 ms (minimum of ~3 ms), suggesting that labyrinthine inputs were relayed to these neurons through trisynaptic and longer pathways. Thoracic interneuronal responses to vertical rotations were similar to those of graviceptors such as otolith organs, and a wide array of tilt directions preferentially activated different cells. Such responses were distinct from those of cells in the cervical and lumbar enlargements, which are mainly elicited by ear-down tilts and are synchronous with stimulus position when low rotational frequencies are delivered, but tend to be in phase with stimulus velocity when high frequencies are employed. The dynamic properties of thoracic interneuronal responses to tilts were instead similar to those of thoracic motoneurons and sympathetic preganglionic neurons. However, the preferred tilt directions of the interneurons were more heterogeneous than thoracic spinal outputs, showing that the outputs do not simply reflect an addition of local interneuronal activity.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>19283370</pmid><doi>10.1007/s00221-009-1754-0</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-4819
ispartof Experimental brain research, 2009-05, Vol.195 (1), p.89-100
issn 0014-4819
1432-1106
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2675666
source Springer Nature; Social Science Premium Collection (Proquest) (PQ_SDU_P3)
subjects Action Potentials - physiology
Afferent Pathways - physiology
Animals
Biological and medical sciences
Biomedical and Life Sciences
Biomedicine
Biophysics
Cats
Decerebrate State - physiopathology
Electric Stimulation - methods
Fundamental and applied biological sciences. Psychology
Interneurons - physiology
Laboratory animals
Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration
Nervous system
Neurology
Neurons
Neurosciences
Peripheral nervous system. Autonomic nervous system. Neuromuscular transmission. Ganglionic transmission. Electric organ
Reaction Time - physiology
Reflex, Vestibulo-Ocular - physiology
Research Article
Spinal cord
Spinal Cord - cytology
Vertebrates: nervous system and sense organs
Vestibular Nerve - physiology
title Responses of thoracic spinal interneurons to vestibular stimulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Responses%20of%20thoracic%20spinal%20interneurons%20to%20vestibular%20stimulation&rft.jtitle=Experimental%20brain%20research&rft.au=Miller,%20D.%20M&rft.date=2009-05-01&rft.volume=195&rft.issue=1&rft.spage=89&rft.epage=100&rft.pages=89-100&rft.issn=0014-4819&rft.eissn=1432-1106&rft.coden=EXBRAP&rft_id=info:doi/10.1007/s00221-009-1754-0&rft_dat=%3Cproquest_pubme%3E1694250591%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c585t-64578018dfa31c80cbbe250b31788795460dab16d7e27332f2cc06bc2b2861a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215133902&rft_id=info:pmid/19283370&rfr_iscdi=true