Loading…

Genetic regulation of arealization of the neocortex

Arealization of the neocortex is controlled by a regulatory hierarchy beginning with morphogens secreted from patterning centers positioned at the perimeter of the dorsal telencephalon. These morphogens act in part to establish within cortical progenitors the differential expression of transcription...

Full description

Saved in:
Bibliographic Details
Published in:Current opinion in neurobiology 2008-02, Vol.18 (1), p.90-100
Main Authors: O’Leary, Dennis DM, Sahara, Setsuko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Arealization of the neocortex is controlled by a regulatory hierarchy beginning with morphogens secreted from patterning centers positioned at the perimeter of the dorsal telencephalon. These morphogens act in part to establish within cortical progenitors the differential expression of transcription factors that specify their area identity, which is inherited by their neuronal progeny, providing the genetic framework for area patterning. The two patterning centers most directly implicated in arealization are the commissural plate, which expresses fibroblast growth factors, and the cortical hem, which expresses bone morphogenetic proteins and vertebrate orthologs of Drosophila wingless, the Wnts. A third, albeit putative, patterning center is the antihem, identified by its expression of multiple signaling molecules. We describe recent findings on roles for these patterning centers in arealization. We also present the most recent evidence on functions of the four transcription factors, Emx2, COUP-TFI, Pax6, and Sp8, thus far implicated in arealization. We also describe screens for candidate target genes of these transcription factors, or other genes potentially involved in arealization. We conclude with an assessment of a forward genetics approach for identifying genes involved in determining area size based in part on quantitative trait locus mapping, and the implications for significant differences between individuals in area size on behavioral performance.
ISSN:0959-4388
1873-6882
DOI:10.1016/j.conb.2008.05.011