Loading…
Simultaneous determination of uric acid metabolites allantoin, 6-aminouracil, and triuret in human urine using liquid chromatography–mass spectrometry
Uric acid (UA) can be directly converted to allantoin enzymatically by uricase in most mammals except humans or by reaction with superoxide. UA can react directly with nitric oxide to generate 6-aminouracil and with peroxynitrite to yield triuret; both of these metabolites have been identified in bi...
Saved in:
Published in: | Journal of chromatography. B, Analytical technologies in the biomedical and life sciences Analytical technologies in the biomedical and life sciences, 2009-01, Vol.877 (1), p.65-70 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Uric acid (UA) can be directly converted to allantoin enzymatically by uricase in most mammals except humans or by reaction with superoxide. UA can react directly with nitric oxide to generate 6-aminouracil and with peroxynitrite to yield triuret; both of these metabolites have been identified in biological samples. We now report a validated high-performance liquid chromatography and tandem mass spectrometry method for the determination of these urinary UA metabolites. Urine samples were diluted 10-fold, filtered and directly injected onto HPLC for LC–MS/MS analysis. The urinary metabolites of UA were separated using gradient HPLC. Identification and quantification of UA urinary metabolites was performed with electrospray in positive ion mode by selected-reaction monitoring (SRM). Correlation coefficients were 0.991–0.999 from the calibration curve. The intra- and inter-day precision (R.S.D., %) of the metabolites ranged from 0.5% to 13.4% and 2.5–12.2%, respectively. In normal individuals (
n
=
21), urinary allantoin, 6-aminouracil and triuret, were 15.30 (±8.96), 0.22 (±0.12), and 0.12 (±0.10)
μg/mg of urinary creatinine (mean (±S.D.)), respectively. The new method was used to show that smoking, which can induce oxidative stress, is associated with elevated triuret levels in urine. Thus, the method may be helpful in identifying pathways of oxidative stress in biological samples. |
---|---|
ISSN: | 1570-0232 1873-376X |
DOI: | 10.1016/j.jchromb.2008.11.029 |