Loading…
TNFα-induced neutral sphingomyelinase-2 modulates synaptic plasticity by controlling the membrane insertion of NMDA receptors
The insertion and removal of N -methyl D -aspartate (NMDA) receptors from the synapse are critical events that modulate synaptic plasticity. While a great deal of progress has been made on understanding the mechanisms that modulate trafficking of NMDA receptors, we do not currently understand the mo...
Saved in:
Published in: | Journal of neurochemistry 2009-03, Vol.109 (5), p.1237-1249 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The insertion and removal of
N
-methyl
D
-aspartate (NMDA) receptors from the synapse are critical events that modulate synaptic plasticity. While a great deal of progress has been made on understanding the mechanisms that modulate trafficking of NMDA receptors, we do not currently understand the molecular events required for the fusion of receptor containing vesicles with the plasma membrane. Here we show that sphingomyelin phosphodiesterase3 (also known as neutral sphingomyelinase-2; nSMase2) is critical for TNFα-induced trafficking of NMDA receptors and synaptic plasticity. TNFα initiated a rapid increase in ceramide that was associated with increased surface localization of NMDA receptor NR1 subunits and a specific clustering of NR1 phosphorylated on serines 896 and 897 into lipid rafts. Brief applications of TNFα increased the rate and amplitude of NMDA-evoked calcium bursts and enhanced excitatory postsynaptic currents (EPSCs). Pharmacological inhibition or genetic mutation of nSMase2 prevented TNFα-induced generation of ceramide, phosphorylation of NR1 subuints, clustering of NR1, enhancement of NMDA-evoked calcium flux and EPSCs. |
---|---|
ISSN: | 0022-3042 1471-4159 |
DOI: | 10.1111/j.1471-4159.2009.06038.x |