Loading…

Differentially expressed membrane transporters in rice roots may contribute to cultivar dependent salt tolerance

Salinity tolerance in rice, like in other glycophytes, is a function of cellular ion homeostasis. The large divergence in ion homeostasis between the salt-tolerant FL478 and salt-sensitive IR29 rice varieties can be exploited to understand mechanisms of salinity tolerance. Physiological studies indi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of experimental botany 2009-07, Vol.60 (9), p.2553-2563
Main Authors: Senadheera, Prasad, Singh, R.K, Maathuis, Frans J.M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c644t-74036f9a7b556a02d761013daea6ca32083b5439e412cb4889f28fad16e859383
cites cdi_FETCH-LOGICAL-c644t-74036f9a7b556a02d761013daea6ca32083b5439e412cb4889f28fad16e859383
container_end_page 2563
container_issue 9
container_start_page 2553
container_title Journal of experimental botany
container_volume 60
creator Senadheera, Prasad
Singh, R.K
Maathuis, Frans J.M
description Salinity tolerance in rice, like in other glycophytes, is a function of cellular ion homeostasis. The large divergence in ion homeostasis between the salt-tolerant FL478 and salt-sensitive IR29 rice varieties can be exploited to understand mechanisms of salinity tolerance. Physiological studies indicate that FL478 shows a lower Na+ influx, a reduced Na+ translocation to the shoot, and maintains a lower Na+:K+ ratio. To understand the basis of these differences, a comparative investigation of transcript regulation in roots of the two cultivars was undertaken. This analysis revealed that genes encoding aquaporins, a silicon transporter, and N transporters are induced in both cultivars. However, transcripts for cation transport proteins including OsCHX11, OsCNGC1, OsCAX, and OsTPC1 showed differential regulation between the cultivars. The encoded proteins are likely to participate in reducing Na+ influx, lowering the tissue Na+:K+ ratio and limiting the apoplastic bypass flow in roots of FL478 and are therefore important new targets to improve salt tolerance in rice.
doi_str_mv 10.1093/jxb/erp099
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2692005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24038013</jstor_id><oup_id>10.1093/jxb/erp099</oup_id><sourcerecordid>24038013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c644t-74036f9a7b556a02d761013daea6ca32083b5439e412cb4889f28fad16e859383</originalsourceid><addsrcrecordid>eNqFkc-L1DAcxYso7rh68a4GQQ9C3fxo0uYi6Koz6oKgLoiXkKbfrhnbpibpMvPfm6HDjHrQS3J4H15e3suy-wQ_J1iys_WmPgM_YilvZAtSCJzTgpGb2QJjSnMseXmS3QlhjTHmmPPb2QmRTHJWiUU2vrZtCx6GaHXXbRFsRg8hQIN66GuvB0AxnWF0PoIPyA7IWwPIOxcD6vUWGTdEb-spJtIhM3XRXmuPGhhhaJIvCrqLSeog-Ri4m91qdRfg3v4-zS7fvvlyvsovPi7fnb-8yI0oipiXBWailbqsORca06YUBBPWaNDCaEZxxWpeMAkFoaYuqkq2tGp1QwRUXLKKnWYvZt9xqntoTEridadGb3vtt8ppq_5UBvtdXblrRYWkqahk8HRv4N3PCUJUvQ0Gui514qagRMlYxavyvyDFRFKBiwQ-_gtcu8kPqQVFGcekEiVO0LMZMt6F4KE9RCZY7eZWaW41z53gh79_8oju903Akz2gg9Fdu5vAhgNHCRelYPjIuWn894MPZm4dovNHn7RWleZJej7rNkTYHHTtf-z6Krlaff2mCHn16f3yw0otE_9o5lvtlL7yKdvl51QYw0QURCbbX88M5IU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>235018670</pqid></control><display><type>article</type><title>Differentially expressed membrane transporters in rice roots may contribute to cultivar dependent salt tolerance</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>Oxford Journals Online</source><creator>Senadheera, Prasad ; Singh, R.K ; Maathuis, Frans J.M</creator><creatorcontrib>Senadheera, Prasad ; Singh, R.K ; Maathuis, Frans J.M</creatorcontrib><description>Salinity tolerance in rice, like in other glycophytes, is a function of cellular ion homeostasis. The large divergence in ion homeostasis between the salt-tolerant FL478 and salt-sensitive IR29 rice varieties can be exploited to understand mechanisms of salinity tolerance. Physiological studies indicate that FL478 shows a lower Na+ influx, a reduced Na+ translocation to the shoot, and maintains a lower Na+:K+ ratio. To understand the basis of these differences, a comparative investigation of transcript regulation in roots of the two cultivars was undertaken. This analysis revealed that genes encoding aquaporins, a silicon transporter, and N transporters are induced in both cultivars. However, transcripts for cation transport proteins including OsCHX11, OsCNGC1, OsCAX, and OsTPC1 showed differential regulation between the cultivars. The encoded proteins are likely to participate in reducing Na+ influx, lowering the tissue Na+:K+ ratio and limiting the apoplastic bypass flow in roots of FL478 and are therefore important new targets to improve salt tolerance in rice.</description><identifier>ISSN: 0022-0957</identifier><identifier>EISSN: 1460-2431</identifier><identifier>DOI: 10.1093/jxb/erp099</identifier><identifier>PMID: 19395386</identifier><identifier>CODEN: JEBOA6</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Agronomy. Soil science and plant productions ; Amino acid transport systems ; ATP binding cassette transporters ; Biological and medical sciences ; Brackish ; Cation Transport Proteins - genetics ; Cation Transport Proteins - metabolism ; Freshwater ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Plant ; Genes ; Genetics and breeding of economic plants ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Monovalent ion uptake ; Nitrates ; Oryza - genetics ; Oryza - physiology ; Oryza sativa ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant roots ; Plant Roots - genetics ; Plant Roots - physiology ; Plants ; Potassium - metabolism ; RESEARCH PAPER ; Research Papers ; Rice ; root membrane transporters ; Salinity ; salinity tolerance ; Salt tolerance ; Silicon ; silicon accumulation-transciptomics ; Sodium - metabolism</subject><ispartof>Journal of experimental botany, 2009-07, Vol.60 (9), p.2553-2563</ispartof><rights>Society for Experimental Biology 2009</rights><rights>2009 The Author(s). 2009</rights><rights>2009 INIST-CNRS</rights><rights>2009 The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c644t-74036f9a7b556a02d761013daea6ca32083b5439e412cb4889f28fad16e859383</citedby><cites>FETCH-LOGICAL-c644t-74036f9a7b556a02d761013daea6ca32083b5439e412cb4889f28fad16e859383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24038013$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24038013$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21567630$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19395386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Senadheera, Prasad</creatorcontrib><creatorcontrib>Singh, R.K</creatorcontrib><creatorcontrib>Maathuis, Frans J.M</creatorcontrib><title>Differentially expressed membrane transporters in rice roots may contribute to cultivar dependent salt tolerance</title><title>Journal of experimental botany</title><addtitle>J Exp Bot</addtitle><description>Salinity tolerance in rice, like in other glycophytes, is a function of cellular ion homeostasis. The large divergence in ion homeostasis between the salt-tolerant FL478 and salt-sensitive IR29 rice varieties can be exploited to understand mechanisms of salinity tolerance. Physiological studies indicate that FL478 shows a lower Na+ influx, a reduced Na+ translocation to the shoot, and maintains a lower Na+:K+ ratio. To understand the basis of these differences, a comparative investigation of transcript regulation in roots of the two cultivars was undertaken. This analysis revealed that genes encoding aquaporins, a silicon transporter, and N transporters are induced in both cultivars. However, transcripts for cation transport proteins including OsCHX11, OsCNGC1, OsCAX, and OsTPC1 showed differential regulation between the cultivars. The encoded proteins are likely to participate in reducing Na+ influx, lowering the tissue Na+:K+ ratio and limiting the apoplastic bypass flow in roots of FL478 and are therefore important new targets to improve salt tolerance in rice.</description><subject>Agronomy. Soil science and plant productions</subject><subject>Amino acid transport systems</subject><subject>ATP binding cassette transporters</subject><subject>Biological and medical sciences</subject><subject>Brackish</subject><subject>Cation Transport Proteins - genetics</subject><subject>Cation Transport Proteins - metabolism</subject><subject>Freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genetics and breeding of economic plants</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Monovalent ion uptake</subject><subject>Nitrates</subject><subject>Oryza - genetics</subject><subject>Oryza - physiology</subject><subject>Oryza sativa</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant roots</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - physiology</subject><subject>Plants</subject><subject>Potassium - metabolism</subject><subject>RESEARCH PAPER</subject><subject>Research Papers</subject><subject>Rice</subject><subject>root membrane transporters</subject><subject>Salinity</subject><subject>salinity tolerance</subject><subject>Salt tolerance</subject><subject>Silicon</subject><subject>silicon accumulation-transciptomics</subject><subject>Sodium - metabolism</subject><issn>0022-0957</issn><issn>1460-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkc-L1DAcxYso7rh68a4GQQ9C3fxo0uYi6Koz6oKgLoiXkKbfrhnbpibpMvPfm6HDjHrQS3J4H15e3suy-wQ_J1iys_WmPgM_YilvZAtSCJzTgpGb2QJjSnMseXmS3QlhjTHmmPPb2QmRTHJWiUU2vrZtCx6GaHXXbRFsRg8hQIN66GuvB0AxnWF0PoIPyA7IWwPIOxcD6vUWGTdEb-spJtIhM3XRXmuPGhhhaJIvCrqLSeog-Ri4m91qdRfg3v4-zS7fvvlyvsovPi7fnb-8yI0oipiXBWailbqsORca06YUBBPWaNDCaEZxxWpeMAkFoaYuqkq2tGp1QwRUXLKKnWYvZt9xqntoTEridadGb3vtt8ppq_5UBvtdXblrRYWkqahk8HRv4N3PCUJUvQ0Gui514qagRMlYxavyvyDFRFKBiwQ-_gtcu8kPqQVFGcekEiVO0LMZMt6F4KE9RCZY7eZWaW41z53gh79_8oju903Akz2gg9Fdu5vAhgNHCRelYPjIuWn894MPZm4dovNHn7RWleZJej7rNkTYHHTtf-z6Krlaff2mCHn16f3yw0otE_9o5lvtlL7yKdvl51QYw0QURCbbX88M5IU</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Senadheera, Prasad</creator><creator>Singh, R.K</creator><creator>Maathuis, Frans J.M</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090701</creationdate><title>Differentially expressed membrane transporters in rice roots may contribute to cultivar dependent salt tolerance</title><author>Senadheera, Prasad ; Singh, R.K ; Maathuis, Frans J.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c644t-74036f9a7b556a02d761013daea6ca32083b5439e412cb4889f28fad16e859383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>Amino acid transport systems</topic><topic>ATP binding cassette transporters</topic><topic>Biological and medical sciences</topic><topic>Brackish</topic><topic>Cation Transport Proteins - genetics</topic><topic>Cation Transport Proteins - metabolism</topic><topic>Freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genetics and breeding of economic plants</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Monovalent ion uptake</topic><topic>Nitrates</topic><topic>Oryza - genetics</topic><topic>Oryza - physiology</topic><topic>Oryza sativa</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant roots</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - physiology</topic><topic>Plants</topic><topic>Potassium - metabolism</topic><topic>RESEARCH PAPER</topic><topic>Research Papers</topic><topic>Rice</topic><topic>root membrane transporters</topic><topic>Salinity</topic><topic>salinity tolerance</topic><topic>Salt tolerance</topic><topic>Silicon</topic><topic>silicon accumulation-transciptomics</topic><topic>Sodium - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Senadheera, Prasad</creatorcontrib><creatorcontrib>Singh, R.K</creatorcontrib><creatorcontrib>Maathuis, Frans J.M</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of experimental botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Senadheera, Prasad</au><au>Singh, R.K</au><au>Maathuis, Frans J.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differentially expressed membrane transporters in rice roots may contribute to cultivar dependent salt tolerance</atitle><jtitle>Journal of experimental botany</jtitle><addtitle>J Exp Bot</addtitle><date>2009-07-01</date><risdate>2009</risdate><volume>60</volume><issue>9</issue><spage>2553</spage><epage>2563</epage><pages>2553-2563</pages><issn>0022-0957</issn><eissn>1460-2431</eissn><coden>JEBOA6</coden><abstract>Salinity tolerance in rice, like in other glycophytes, is a function of cellular ion homeostasis. The large divergence in ion homeostasis between the salt-tolerant FL478 and salt-sensitive IR29 rice varieties can be exploited to understand mechanisms of salinity tolerance. Physiological studies indicate that FL478 shows a lower Na+ influx, a reduced Na+ translocation to the shoot, and maintains a lower Na+:K+ ratio. To understand the basis of these differences, a comparative investigation of transcript regulation in roots of the two cultivars was undertaken. This analysis revealed that genes encoding aquaporins, a silicon transporter, and N transporters are induced in both cultivars. However, transcripts for cation transport proteins including OsCHX11, OsCNGC1, OsCAX, and OsTPC1 showed differential regulation between the cultivars. The encoded proteins are likely to participate in reducing Na+ influx, lowering the tissue Na+:K+ ratio and limiting the apoplastic bypass flow in roots of FL478 and are therefore important new targets to improve salt tolerance in rice.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>19395386</pmid><doi>10.1093/jxb/erp099</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0957
ispartof Journal of experimental botany, 2009-07, Vol.60 (9), p.2553-2563
issn 0022-0957
1460-2431
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2692005
source JSTOR Archival Journals and Primary Sources Collection【Remote access available】; Oxford Journals Online
subjects Agronomy. Soil science and plant productions
Amino acid transport systems
ATP binding cassette transporters
Biological and medical sciences
Brackish
Cation Transport Proteins - genetics
Cation Transport Proteins - metabolism
Freshwater
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Plant
Genes
Genetics and breeding of economic plants
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Monovalent ion uptake
Nitrates
Oryza - genetics
Oryza - physiology
Oryza sativa
Plant Proteins - genetics
Plant Proteins - metabolism
Plant roots
Plant Roots - genetics
Plant Roots - physiology
Plants
Potassium - metabolism
RESEARCH PAPER
Research Papers
Rice
root membrane transporters
Salinity
salinity tolerance
Salt tolerance
Silicon
silicon accumulation-transciptomics
Sodium - metabolism
title Differentially expressed membrane transporters in rice roots may contribute to cultivar dependent salt tolerance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A39%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differentially%20expressed%20membrane%20transporters%20in%20rice%20roots%20may%20contribute%20to%20cultivar%20dependent%20salt%20tolerance&rft.jtitle=Journal%20of%20experimental%20botany&rft.au=Senadheera,%20Prasad&rft.date=2009-07-01&rft.volume=60&rft.issue=9&rft.spage=2553&rft.epage=2563&rft.pages=2553-2563&rft.issn=0022-0957&rft.eissn=1460-2431&rft.coden=JEBOA6&rft_id=info:doi/10.1093/jxb/erp099&rft_dat=%3Cjstor_pubme%3E24038013%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c644t-74036f9a7b556a02d761013daea6ca32083b5439e412cb4889f28fad16e859383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=235018670&rft_id=info:pmid/19395386&rft_jstor_id=24038013&rft_oup_id=10.1093/jxb/erp099&rfr_iscdi=true