Loading…

The Arrestin Fold: Variations on a Theme

Endocytosis of ligand-activated plasma membrane receptors has been shown to contribute to the regulation of their downstream signaling. β-arrestins interact with the phosphorylated tail of activated receptors and act as scaffolds for the recruitment of adaptor proteins and clathrin, that constitute...

Full description

Saved in:
Bibliographic Details
Published in:Current genomics 2009-04, Vol.10 (2), p.133-142
Main Authors: Aubry, Laurence, Guetta, Dorian, Klein, Gérard
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-b556t-b9391b6c03bc4bd1b7b0dd65cce9f778cf121f3c82ada9b2a6520ddd7d313acb3
cites
container_end_page 142
container_issue 2
container_start_page 133
container_title Current genomics
container_volume 10
creator Aubry, Laurence
Guetta, Dorian
Klein, Gérard
description Endocytosis of ligand-activated plasma membrane receptors has been shown to contribute to the regulation of their downstream signaling. β-arrestins interact with the phosphorylated tail of activated receptors and act as scaffolds for the recruitment of adaptor proteins and clathrin, that constitute the machinery used for receptor endocytosis. Visual- and β-arrestins have a two-lobe, immunoglobulin-like, β-strand sandwich structure. The recent resolution of the crystal structure of VPS26, one of the retromer subunits, unexpectedly evidences an arrestin fold in this protein, which is otherwise unrelated to arrestins. From a functional point of view, VPS26 is involved in the retrograde transport of the mannose 6-P receptor from the endosomes to the trans-Golgi network. In addition to the group of genuine arrestins and Vps26, mammalian cells harbor a vast repertoire of proteins that are related to arrestins on the basis of their PFAM Nter and Cter arrestin- domains, which are named Arrestin Domain- Containing proteins (ADCs). The biological role of ADC proteins is still poorly understood. The three subfamilies have been merged into an arrestin-related protein clan. This paper provides an overall analysis of arrestin clan proteins. The structures and functions of members of the subfamilies are reviewed in mammals and model organisms such as Drosophila, Caenorhabditis, Saccharomyces and Dictyostelium.
doi_str_mv 10.2174/138920209787847014
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2699828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733599828</sourcerecordid><originalsourceid>FETCH-LOGICAL-b556t-b9391b6c03bc4bd1b7b0dd65cce9f778cf121f3c82ada9b2a6520ddd7d313acb3</originalsourceid><addsrcrecordid>eNp90Utv1DAQAOAIUdFS-AMcUE7AJcWPJLY5IFVVH0iVuBSuI9uZbAyJHeykq57547jabQEhcfLI_mY04ymKV5ScMCrq95RLxQgjSkgha0Fo_aQ4olI0VVNL-TTHGVRZqMPieUrfSLZSkGfFIVVCZdIeFe9uBixPY8S0OF9ehLH7UH7V0enFBZ_K4EtdZjLhi-Kg12PCl_vzuPhycX5zdlVdf778dHZ6XZmmaZfKKK6oaS3hxtamo0YY0nVtYy2qXghpe8poz61kutPKMN02LINOdJxybQ0_Lj7u6s6rmbCz6JeoR5ijm3S8g6Ad_P3i3QCbcAusVUoymQu83ReI4cea54LJJYvjqD2GNYHgvHmQb_4rGWlpzZs6Q7aDNoaUIvaP7VAC96uAf1eRk17_OcjvlP3fZ_BzB0yeZNBTsg69xUc4LMsM2-0WcI34XScc0S5gwwRhRr_GMcd-ybkwDzNs0EcEHRdnRwSXkn9oSsFtGNcJ75vN9ysCgzTrTb7gnP8CZOS2ng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20614354</pqid></control><display><type>article</type><title>The Arrestin Fold: Variations on a Theme</title><source>PubMed Central</source><creator>Aubry, Laurence ; Guetta, Dorian ; Klein, Gérard</creator><creatorcontrib>Aubry, Laurence ; Guetta, Dorian ; Klein, Gérard</creatorcontrib><description>Endocytosis of ligand-activated plasma membrane receptors has been shown to contribute to the regulation of their downstream signaling. β-arrestins interact with the phosphorylated tail of activated receptors and act as scaffolds for the recruitment of adaptor proteins and clathrin, that constitute the machinery used for receptor endocytosis. Visual- and β-arrestins have a two-lobe, immunoglobulin-like, β-strand sandwich structure. The recent resolution of the crystal structure of VPS26, one of the retromer subunits, unexpectedly evidences an arrestin fold in this protein, which is otherwise unrelated to arrestins. From a functional point of view, VPS26 is involved in the retrograde transport of the mannose 6-P receptor from the endosomes to the trans-Golgi network. In addition to the group of genuine arrestins and Vps26, mammalian cells harbor a vast repertoire of proteins that are related to arrestins on the basis of their PFAM Nter and Cter arrestin- domains, which are named Arrestin Domain- Containing proteins (ADCs). The biological role of ADC proteins is still poorly understood. The three subfamilies have been merged into an arrestin-related protein clan. This paper provides an overall analysis of arrestin clan proteins. The structures and functions of members of the subfamilies are reviewed in mammals and model organisms such as Drosophila, Caenorhabditis, Saccharomyces and Dictyostelium.</description><identifier>ISSN: 1389-2029</identifier><identifier>EISSN: 1875-5488</identifier><identifier>DOI: 10.2174/138920209787847014</identifier><identifier>PMID: 19794886</identifier><language>eng</language><publisher>United Arab Emirates: Bentham Science Publishers Ltd</publisher><subject>Caenorhabditis ; Dictyostelium ; Drosophila ; Saccharomyces</subject><ispartof>Current genomics, 2009-04, Vol.10 (2), p.133-142</ispartof><rights>2009 Bentham Science Publishers Ltd. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b556t-b9391b6c03bc4bd1b7b0dd65cce9f778cf121f3c82ada9b2a6520ddd7d313acb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699828/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699828/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19794886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aubry, Laurence</creatorcontrib><creatorcontrib>Guetta, Dorian</creatorcontrib><creatorcontrib>Klein, Gérard</creatorcontrib><title>The Arrestin Fold: Variations on a Theme</title><title>Current genomics</title><addtitle>CG</addtitle><description>Endocytosis of ligand-activated plasma membrane receptors has been shown to contribute to the regulation of their downstream signaling. β-arrestins interact with the phosphorylated tail of activated receptors and act as scaffolds for the recruitment of adaptor proteins and clathrin, that constitute the machinery used for receptor endocytosis. Visual- and β-arrestins have a two-lobe, immunoglobulin-like, β-strand sandwich structure. The recent resolution of the crystal structure of VPS26, one of the retromer subunits, unexpectedly evidences an arrestin fold in this protein, which is otherwise unrelated to arrestins. From a functional point of view, VPS26 is involved in the retrograde transport of the mannose 6-P receptor from the endosomes to the trans-Golgi network. In addition to the group of genuine arrestins and Vps26, mammalian cells harbor a vast repertoire of proteins that are related to arrestins on the basis of their PFAM Nter and Cter arrestin- domains, which are named Arrestin Domain- Containing proteins (ADCs). The biological role of ADC proteins is still poorly understood. The three subfamilies have been merged into an arrestin-related protein clan. This paper provides an overall analysis of arrestin clan proteins. The structures and functions of members of the subfamilies are reviewed in mammals and model organisms such as Drosophila, Caenorhabditis, Saccharomyces and Dictyostelium.</description><subject>Caenorhabditis</subject><subject>Dictyostelium</subject><subject>Drosophila</subject><subject>Saccharomyces</subject><issn>1389-2029</issn><issn>1875-5488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90Utv1DAQAOAIUdFS-AMcUE7AJcWPJLY5IFVVH0iVuBSuI9uZbAyJHeykq57547jabQEhcfLI_mY04ymKV5ScMCrq95RLxQgjSkgha0Fo_aQ4olI0VVNL-TTHGVRZqMPieUrfSLZSkGfFIVVCZdIeFe9uBixPY8S0OF9ehLH7UH7V0enFBZ_K4EtdZjLhi-Kg12PCl_vzuPhycX5zdlVdf778dHZ6XZmmaZfKKK6oaS3hxtamo0YY0nVtYy2qXghpe8poz61kutPKMN02LINOdJxybQ0_Lj7u6s6rmbCz6JeoR5ijm3S8g6Ad_P3i3QCbcAusVUoymQu83ReI4cea54LJJYvjqD2GNYHgvHmQb_4rGWlpzZs6Q7aDNoaUIvaP7VAC96uAf1eRk17_OcjvlP3fZ_BzB0yeZNBTsg69xUc4LMsM2-0WcI34XScc0S5gwwRhRr_GMcd-ybkwDzNs0EcEHRdnRwSXkn9oSsFtGNcJ75vN9ysCgzTrTb7gnP8CZOS2ng</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Aubry, Laurence</creator><creator>Guetta, Dorian</creator><creator>Klein, Gérard</creator><general>Bentham Science Publishers Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090401</creationdate><title>The Arrestin Fold: Variations on a Theme</title><author>Aubry, Laurence ; Guetta, Dorian ; Klein, Gérard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b556t-b9391b6c03bc4bd1b7b0dd65cce9f778cf121f3c82ada9b2a6520ddd7d313acb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Caenorhabditis</topic><topic>Dictyostelium</topic><topic>Drosophila</topic><topic>Saccharomyces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aubry, Laurence</creatorcontrib><creatorcontrib>Guetta, Dorian</creatorcontrib><creatorcontrib>Klein, Gérard</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aubry, Laurence</au><au>Guetta, Dorian</au><au>Klein, Gérard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Arrestin Fold: Variations on a Theme</atitle><jtitle>Current genomics</jtitle><addtitle>CG</addtitle><date>2009-04-01</date><risdate>2009</risdate><volume>10</volume><issue>2</issue><spage>133</spage><epage>142</epage><pages>133-142</pages><issn>1389-2029</issn><eissn>1875-5488</eissn><abstract>Endocytosis of ligand-activated plasma membrane receptors has been shown to contribute to the regulation of their downstream signaling. β-arrestins interact with the phosphorylated tail of activated receptors and act as scaffolds for the recruitment of adaptor proteins and clathrin, that constitute the machinery used for receptor endocytosis. Visual- and β-arrestins have a two-lobe, immunoglobulin-like, β-strand sandwich structure. The recent resolution of the crystal structure of VPS26, one of the retromer subunits, unexpectedly evidences an arrestin fold in this protein, which is otherwise unrelated to arrestins. From a functional point of view, VPS26 is involved in the retrograde transport of the mannose 6-P receptor from the endosomes to the trans-Golgi network. In addition to the group of genuine arrestins and Vps26, mammalian cells harbor a vast repertoire of proteins that are related to arrestins on the basis of their PFAM Nter and Cter arrestin- domains, which are named Arrestin Domain- Containing proteins (ADCs). The biological role of ADC proteins is still poorly understood. The three subfamilies have been merged into an arrestin-related protein clan. This paper provides an overall analysis of arrestin clan proteins. The structures and functions of members of the subfamilies are reviewed in mammals and model organisms such as Drosophila, Caenorhabditis, Saccharomyces and Dictyostelium.</abstract><cop>United Arab Emirates</cop><pub>Bentham Science Publishers Ltd</pub><pmid>19794886</pmid><doi>10.2174/138920209787847014</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1389-2029
ispartof Current genomics, 2009-04, Vol.10 (2), p.133-142
issn 1389-2029
1875-5488
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2699828
source PubMed Central
subjects Caenorhabditis
Dictyostelium
Drosophila
Saccharomyces
title The Arrestin Fold: Variations on a Theme
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Arrestin%20Fold:%20Variations%20on%20a%20Theme&rft.jtitle=Current%20genomics&rft.au=Aubry,%20Laurence&rft.date=2009-04-01&rft.volume=10&rft.issue=2&rft.spage=133&rft.epage=142&rft.pages=133-142&rft.issn=1389-2029&rft.eissn=1875-5488&rft_id=info:doi/10.2174/138920209787847014&rft_dat=%3Cproquest_pubme%3E733599828%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b556t-b9391b6c03bc4bd1b7b0dd65cce9f778cf121f3c82ada9b2a6520ddd7d313acb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20614354&rft_id=info:pmid/19794886&rfr_iscdi=true