Loading…
Neural tube defects in mice with reduced levels of inositol 1,3,4-trisphosphate 5/6-kinase
Inositol 1,3,4-trisphosphate 5/6-kinase (ITPK1) is a key regulatory enzyme at the branch point for the synthesis of inositol hexakisphosphate (IP₆), an intracellular signaling molecule implicated in the regulation of ion channels, endocytosis, exocytosis, transcription, DNA repair, and RNA export fr...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2009-06, Vol.106 (24), p.9831-9835 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Inositol 1,3,4-trisphosphate 5/6-kinase (ITPK1) is a key regulatory enzyme at the branch point for the synthesis of inositol hexakisphosphate (IP₆), an intracellular signaling molecule implicated in the regulation of ion channels, endocytosis, exocytosis, transcription, DNA repair, and RNA export from the nucleus. IP₆ also has been shown to be an integral structural component of several proteins. We have generated a mouse strain harboring a β-galactosidase (βgal) gene trap cassette in the second intron of the Itpk1 gene. Animals homozygous for this gene trap are viable, fertile, and produce less ITPK1 protein than wild-type and heterozygous animals. Thus, the gene trap represents a hypomorphic rather than a null allele. Using a combination of immunohistochemistry, in situ hybridization, and βgal staining of mice heterozygous for the hypomorphic allele, we found high expression of Itpk1 in the developing central and peripheral nervous systems and in the paraxial mesoderm. Examination of embryos resulting from homozygous matings uncovered neural tube defects (NTDs) in some animals and axial skeletal defects or growth retardation in others. On a C57BL/6 x 129(P2)Ola background, 12% of mid-gestation embryos had spina bifida and/or exencephaly, whereas wild-type animals of the same genetic background had no NTDs. We conclude that ITPK1 is required for proper development of the neural tube and axial mesoderm. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0904172106 |