Loading…
γ-Glutamyl transpeptidase is induced by 4-hydroxynonenal via EpRE/Nrf2 signaling in rat epithelial type II cells
γ-Glutamyl transpeptidase (GGT) plays key roles in glutathione homeostasis and metabolism of glutathione S-conjugates. Rat GGT is transcribed via five tandemly arranged promoters into seven transcripts. The transcription of mRNA V is controlled by promoter 5. Previously we found that GGT mRNA V-2 wa...
Saved in:
Published in: | Free radical biology & medicine 2006-04, Vol.40 (8), p.1281-1292 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | γ-Glutamyl transpeptidase (GGT) plays key roles in glutathione homeostasis and metabolism of glutathione
S-conjugates. Rat GGT is transcribed via five tandemly arranged promoters into seven transcripts. The transcription of mRNA V is controlled by promoter 5. Previously we found that GGT mRNA V-2 was responsible for the induction of GGT in rat alveolar epithelial cells by 4-hydroxynonenal (HNE). In the current study, the underlying mechanism was investigated. Reporter deletion and mutation analysis demonstrated that an electrophile-response element (EpRE) in the proximal region of GGT promoter 5 (GP5) was responsible for the basal- and HNE-induced promoter activity. Gel-shift assays showed an increased binding activity of GP5 EpRE after HNE exposure. The nuclear content of NF-E2-related factor 2 (Nrf2) was significantly increased by HNE. The recruitment of Nrf2 to GP5 EpRE after HNE treatment was demonstrated by supershift and chromatin immunoprecipitation assays. The tissue expression pattern of GGT mRNA V was previously unknown. Using polymerase chain reaction, we found that GGT mRNA V-2 was expressed in many tissues in rat. Taken together, GGT mRNA V-2 is widely expressed in rat tissues and its basal and HNE-induced expression is mediated through EpRE/Nrf2 signaling. |
---|---|
ISSN: | 0891-5849 1873-4596 |
DOI: | 10.1016/j.freeradbiomed.2005.11.005 |