Loading…

Minireview: Fetal-Maternal Hormonal Signaling in Pregnancy and Labor

Mechanisms underlying the initiation of parturition remain unclear. Throughout most of pregnancy, uterine quiescence is maintained by elevated progesterone acting through progesterone receptor (PR). Although in most mammals, parturition is associated with a marked decline in maternal progesterone, i...

Full description

Saved in:
Bibliographic Details
Published in:Molecular endocrinology (Baltimore, Md.) Md.), 2009-07, Vol.23 (7), p.947-954
Main Author: Mendelson, Carole R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mechanisms underlying the initiation of parturition remain unclear. Throughout most of pregnancy, uterine quiescence is maintained by elevated progesterone acting through progesterone receptor (PR). Although in most mammals, parturition is associated with a marked decline in maternal progesterone, in humans, circulating progesterone and uterine PR remain elevated throughout pregnancy, suggesting a critical role for functional PR inactivation in the initiation of labor. Both term and preterm labor in humans and rodents are associated with an inflammatory response. In preterm labor, intraamniotic infection likely provides the stimulus for increased amniotic fluid interleukins and migration of inflammatory cells into the uterus and cervix. However, at term, the stimulus for this inflammatory response is unknown. Increasing evidence suggests that the developing fetus may produce physical and hormonal signals that stimulate macrophage migration to the uterus, with release of cytokines and activation of inflammatory transcription factors, such as nuclear factor κB (NF-κB) and activator protein 1 (AP-1), which also is activated by myometrial stretch. We postulate that the increased inflammatory response and NF-κB activation promote uterine contractility via 1) direct activation of contractile genes (e.g. COX-2, oxytocin receptor, and connexin 43) and 2) impairment of the capacity of PR to mediate uterine quiescence. PR function near term may be compromised by direct interaction with NF-κB, altered expression of PR coregulators, increased metabolism of progesterone within the cervix and myometrium, and increased expression of inhibitory PR isoforms. Alternatively, we propose that uterine quiescence during pregnancy is regulated, in part, by PR antagonism of the inflammatory response. Uterine quiescence throughout pregnancy and its increased contractility at term are regulated by a complex interplay of pro- and anti-inflammatory signals between fetus and mother.
ISSN:0888-8809
1944-9917
DOI:10.1210/me.2009-0016