Loading…

The mitochondrial permeability transition pore in motor neurons: Involvement in the pathobiology of ALS mice

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of motor neurons (MNs) that causes paralysis. Some forms of ALS are inherited, caused by mutations in the superoxide dismutase-1 ( SOD1) gene. The mechanisms of human mutant SOD1 (mSOD1) toxicity to MNs are unresolved. Mitochon...

Full description

Saved in:
Bibliographic Details
Published in:Experimental neurology 2009-08, Vol.218 (2), p.333-346
Main Authors: Martin, Lee J., Gertz, Barry, Pan, Yan, Price, Ann C., Molkentin, Jeffery D., Chang, Qing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c570t-9142aba37c2857638edf2296f334ef1bab084b8b6b663651aa9b4195edd930603
cites cdi_FETCH-LOGICAL-c570t-9142aba37c2857638edf2296f334ef1bab084b8b6b663651aa9b4195edd930603
container_end_page 346
container_issue 2
container_start_page 333
container_title Experimental neurology
container_volume 218
creator Martin, Lee J.
Gertz, Barry
Pan, Yan
Price, Ann C.
Molkentin, Jeffery D.
Chang, Qing
description Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of motor neurons (MNs) that causes paralysis. Some forms of ALS are inherited, caused by mutations in the superoxide dismutase-1 ( SOD1) gene. The mechanisms of human mutant SOD1 (mSOD1) toxicity to MNs are unresolved. Mitochondria in MNs might be key sites for ALS pathogenesis, but cause–effect relationships between mSOD1 and mitochondriopathy need further study. We used transgenic mSOD1 mice to test the hypothesis that the mitochondrial permeability transition pore (mPTP) is involved in the MN degeneration of ALS. Components of the multi-protein mPTP are expressed highly in mouse MNs, including the voltage-dependent anion channel, adenine nucleotide translocator (ANT), and cyclophilin D (CyPD), and are present in mitochondria marked by manganese SOD. MNs in pre-symptomatic mSOD1-G93A mice form swollen megamitochondria with CyPD immunoreactivity. Early disease is associated with mitochondrial cristae remodeling and matrix vesiculation in ventral horn neuron dendrites. MN cell bodies accumulate mitochondria derived from the distal axons projecting to skeletal muscle. Incipient disease in spinal cord is associated with increased oxidative and nitrative stress, indicated by protein carbonyls and nitration of CyPD and ANT. Reducing the levels of CyPD by genetic ablation significantly delays disease onset and extends the lifespan of G93A-mSOD1 mice expressing high and low levels of mutant protein in a gender-dependent pattern. These results demonstrate that mitochondria have causal roles in the disease mechanisms in MNs in ALS mice. This work defines a new mitochondrial mechanism for MN degeneration in ALS.
doi_str_mv 10.1016/j.expneurol.2009.02.015
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2710399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014488609000612</els_id><sourcerecordid>67484839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-9142aba37c2857638edf2296f334ef1bab084b8b6b663651aa9b4195edd930603</originalsourceid><addsrcrecordid>eNqFkU2P0zAQhiMEYsvCXwCfuCWMP-LEHJCqFR8rVeLAcracZLJ1ldjBdqvtv8el1QKnPc1hnnnfmXmL4h2FigKVH3YVPiwO98FPFQNQFbAKaP2sWFFQUDLB4XmxAqCiFG0rr4pXMe4gg4I1L4srqljDeNOsiului2S2yfdb74ZgzUQWDDOazk42HUkKxkWbrHdk8QGJdWT2yQfyx9zFj-TWHfx0wBldOnVT1ltM2vrO-snfH4kfyXrzI3v0-Lp4MZop4ptLvS5-fvl8d_Ot3Hz_enuz3pR93UAqFRXMdIY3PWvrRvIWh5ExJUfOBY60Mx20oms72UnJZU2NUZ2gqsZhUBwk8Ovi01l32XczDn1eLZhJL8HOJhy1N1b_33F2q-_9QbOGAlcqC7y_CAT_a48x6dnGHqfJOPT7qGUjWtHyp0EGlLdS8Aw2Z7APPsaA4-M2FPQpUr3Tj5HqU6QamM6R5sm3_x7zd-6SYQbWZwDzSw8Wg469RdfjYAP2SQ_ePmnyG20Uuhg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20138643</pqid></control><display><type>article</type><title>The mitochondrial permeability transition pore in motor neurons: Involvement in the pathobiology of ALS mice</title><source>ScienceDirect Freedom Collection</source><creator>Martin, Lee J. ; Gertz, Barry ; Pan, Yan ; Price, Ann C. ; Molkentin, Jeffery D. ; Chang, Qing</creator><creatorcontrib>Martin, Lee J. ; Gertz, Barry ; Pan, Yan ; Price, Ann C. ; Molkentin, Jeffery D. ; Chang, Qing</creatorcontrib><description>Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of motor neurons (MNs) that causes paralysis. Some forms of ALS are inherited, caused by mutations in the superoxide dismutase-1 ( SOD1) gene. The mechanisms of human mutant SOD1 (mSOD1) toxicity to MNs are unresolved. Mitochondria in MNs might be key sites for ALS pathogenesis, but cause–effect relationships between mSOD1 and mitochondriopathy need further study. We used transgenic mSOD1 mice to test the hypothesis that the mitochondrial permeability transition pore (mPTP) is involved in the MN degeneration of ALS. Components of the multi-protein mPTP are expressed highly in mouse MNs, including the voltage-dependent anion channel, adenine nucleotide translocator (ANT), and cyclophilin D (CyPD), and are present in mitochondria marked by manganese SOD. MNs in pre-symptomatic mSOD1-G93A mice form swollen megamitochondria with CyPD immunoreactivity. Early disease is associated with mitochondrial cristae remodeling and matrix vesiculation in ventral horn neuron dendrites. MN cell bodies accumulate mitochondria derived from the distal axons projecting to skeletal muscle. Incipient disease in spinal cord is associated with increased oxidative and nitrative stress, indicated by protein carbonyls and nitration of CyPD and ANT. Reducing the levels of CyPD by genetic ablation significantly delays disease onset and extends the lifespan of G93A-mSOD1 mice expressing high and low levels of mutant protein in a gender-dependent pattern. These results demonstrate that mitochondria have causal roles in the disease mechanisms in MNs in ALS mice. This work defines a new mitochondrial mechanism for MN degeneration in ALS.</description><identifier>ISSN: 0014-4886</identifier><identifier>EISSN: 1090-2430</identifier><identifier>DOI: 10.1016/j.expneurol.2009.02.015</identifier><identifier>PMID: 19272377</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenine nucleotide translocase ; Adenine Nucleotide Translocator 1 - genetics ; Adenine Nucleotide Translocator 1 - metabolism ; Amyotrophic Lateral Sclerosis - genetics ; Amyotrophic Lateral Sclerosis - metabolism ; Amyotrophic Lateral Sclerosis - pathology ; Animals ; Blotting, Western ; Cristae remodeling ; Cyclophilins - genetics ; Cyclophilins - metabolism ; Disease Models, Animal ; Genotype ; Immunohistochemistry ; Mice ; Mice, Transgenic ; Microscopy, Electron ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondria - ultrastructure ; Mitochondrial Membrane Transport Proteins - genetics ; Mitochondrial Membrane Transport Proteins - metabolism ; Mitochondrial Permeability Transition Pore ; Motor Neurons - metabolism ; Motor Neurons - ultrastructure ; Mutant Sod1 ; Mutation ; Nitration ; Peptidyl-Prolyl Isomerase F ; Porin ; ppif ; Superoxide Dismutase - genetics ; Superoxide Dismutase - metabolism ; Superoxide Dismutase-1 ; Voltage-dependent anion channel ; Voltage-Dependent Anion Channels - genetics ; Voltage-Dependent Anion Channels - metabolism</subject><ispartof>Experimental neurology, 2009-08, Vol.218 (2), p.333-346</ispartof><rights>2009 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-9142aba37c2857638edf2296f334ef1bab084b8b6b663651aa9b4195edd930603</citedby><cites>FETCH-LOGICAL-c570t-9142aba37c2857638edf2296f334ef1bab084b8b6b663651aa9b4195edd930603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27900,27901</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19272377$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin, Lee J.</creatorcontrib><creatorcontrib>Gertz, Barry</creatorcontrib><creatorcontrib>Pan, Yan</creatorcontrib><creatorcontrib>Price, Ann C.</creatorcontrib><creatorcontrib>Molkentin, Jeffery D.</creatorcontrib><creatorcontrib>Chang, Qing</creatorcontrib><title>The mitochondrial permeability transition pore in motor neurons: Involvement in the pathobiology of ALS mice</title><title>Experimental neurology</title><addtitle>Exp Neurol</addtitle><description>Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of motor neurons (MNs) that causes paralysis. Some forms of ALS are inherited, caused by mutations in the superoxide dismutase-1 ( SOD1) gene. The mechanisms of human mutant SOD1 (mSOD1) toxicity to MNs are unresolved. Mitochondria in MNs might be key sites for ALS pathogenesis, but cause–effect relationships between mSOD1 and mitochondriopathy need further study. We used transgenic mSOD1 mice to test the hypothesis that the mitochondrial permeability transition pore (mPTP) is involved in the MN degeneration of ALS. Components of the multi-protein mPTP are expressed highly in mouse MNs, including the voltage-dependent anion channel, adenine nucleotide translocator (ANT), and cyclophilin D (CyPD), and are present in mitochondria marked by manganese SOD. MNs in pre-symptomatic mSOD1-G93A mice form swollen megamitochondria with CyPD immunoreactivity. Early disease is associated with mitochondrial cristae remodeling and matrix vesiculation in ventral horn neuron dendrites. MN cell bodies accumulate mitochondria derived from the distal axons projecting to skeletal muscle. Incipient disease in spinal cord is associated with increased oxidative and nitrative stress, indicated by protein carbonyls and nitration of CyPD and ANT. Reducing the levels of CyPD by genetic ablation significantly delays disease onset and extends the lifespan of G93A-mSOD1 mice expressing high and low levels of mutant protein in a gender-dependent pattern. These results demonstrate that mitochondria have causal roles in the disease mechanisms in MNs in ALS mice. This work defines a new mitochondrial mechanism for MN degeneration in ALS.</description><subject>Adenine nucleotide translocase</subject><subject>Adenine Nucleotide Translocator 1 - genetics</subject><subject>Adenine Nucleotide Translocator 1 - metabolism</subject><subject>Amyotrophic Lateral Sclerosis - genetics</subject><subject>Amyotrophic Lateral Sclerosis - metabolism</subject><subject>Amyotrophic Lateral Sclerosis - pathology</subject><subject>Animals</subject><subject>Blotting, Western</subject><subject>Cristae remodeling</subject><subject>Cyclophilins - genetics</subject><subject>Cyclophilins - metabolism</subject><subject>Disease Models, Animal</subject><subject>Genotype</subject><subject>Immunohistochemistry</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microscopy, Electron</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - ultrastructure</subject><subject>Mitochondrial Membrane Transport Proteins - genetics</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Mitochondrial Permeability Transition Pore</subject><subject>Motor Neurons - metabolism</subject><subject>Motor Neurons - ultrastructure</subject><subject>Mutant Sod1</subject><subject>Mutation</subject><subject>Nitration</subject><subject>Peptidyl-Prolyl Isomerase F</subject><subject>Porin</subject><subject>ppif</subject><subject>Superoxide Dismutase - genetics</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Superoxide Dismutase-1</subject><subject>Voltage-dependent anion channel</subject><subject>Voltage-Dependent Anion Channels - genetics</subject><subject>Voltage-Dependent Anion Channels - metabolism</subject><issn>0014-4886</issn><issn>1090-2430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkU2P0zAQhiMEYsvCXwCfuCWMP-LEHJCqFR8rVeLAcracZLJ1ldjBdqvtv8el1QKnPc1hnnnfmXmL4h2FigKVH3YVPiwO98FPFQNQFbAKaP2sWFFQUDLB4XmxAqCiFG0rr4pXMe4gg4I1L4srqljDeNOsiului2S2yfdb74ZgzUQWDDOazk42HUkKxkWbrHdk8QGJdWT2yQfyx9zFj-TWHfx0wBldOnVT1ltM2vrO-snfH4kfyXrzI3v0-Lp4MZop4ptLvS5-fvl8d_Ot3Hz_enuz3pR93UAqFRXMdIY3PWvrRvIWh5ExJUfOBY60Mx20oms72UnJZU2NUZ2gqsZhUBwk8Ovi01l32XczDn1eLZhJL8HOJhy1N1b_33F2q-_9QbOGAlcqC7y_CAT_a48x6dnGHqfJOPT7qGUjWtHyp0EGlLdS8Aw2Z7APPsaA4-M2FPQpUr3Tj5HqU6QamM6R5sm3_x7zd-6SYQbWZwDzSw8Wg469RdfjYAP2SQ_ePmnyG20Uuhg</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Martin, Lee J.</creator><creator>Gertz, Barry</creator><creator>Pan, Yan</creator><creator>Price, Ann C.</creator><creator>Molkentin, Jeffery D.</creator><creator>Chang, Qing</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090801</creationdate><title>The mitochondrial permeability transition pore in motor neurons: Involvement in the pathobiology of ALS mice</title><author>Martin, Lee J. ; Gertz, Barry ; Pan, Yan ; Price, Ann C. ; Molkentin, Jeffery D. ; Chang, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-9142aba37c2857638edf2296f334ef1bab084b8b6b663651aa9b4195edd930603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adenine nucleotide translocase</topic><topic>Adenine Nucleotide Translocator 1 - genetics</topic><topic>Adenine Nucleotide Translocator 1 - metabolism</topic><topic>Amyotrophic Lateral Sclerosis - genetics</topic><topic>Amyotrophic Lateral Sclerosis - metabolism</topic><topic>Amyotrophic Lateral Sclerosis - pathology</topic><topic>Animals</topic><topic>Blotting, Western</topic><topic>Cristae remodeling</topic><topic>Cyclophilins - genetics</topic><topic>Cyclophilins - metabolism</topic><topic>Disease Models, Animal</topic><topic>Genotype</topic><topic>Immunohistochemistry</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microscopy, Electron</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - ultrastructure</topic><topic>Mitochondrial Membrane Transport Proteins - genetics</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Mitochondrial Permeability Transition Pore</topic><topic>Motor Neurons - metabolism</topic><topic>Motor Neurons - ultrastructure</topic><topic>Mutant Sod1</topic><topic>Mutation</topic><topic>Nitration</topic><topic>Peptidyl-Prolyl Isomerase F</topic><topic>Porin</topic><topic>ppif</topic><topic>Superoxide Dismutase - genetics</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Superoxide Dismutase-1</topic><topic>Voltage-dependent anion channel</topic><topic>Voltage-Dependent Anion Channels - genetics</topic><topic>Voltage-Dependent Anion Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Lee J.</creatorcontrib><creatorcontrib>Gertz, Barry</creatorcontrib><creatorcontrib>Pan, Yan</creatorcontrib><creatorcontrib>Price, Ann C.</creatorcontrib><creatorcontrib>Molkentin, Jeffery D.</creatorcontrib><creatorcontrib>Chang, Qing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Lee J.</au><au>Gertz, Barry</au><au>Pan, Yan</au><au>Price, Ann C.</au><au>Molkentin, Jeffery D.</au><au>Chang, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mitochondrial permeability transition pore in motor neurons: Involvement in the pathobiology of ALS mice</atitle><jtitle>Experimental neurology</jtitle><addtitle>Exp Neurol</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>218</volume><issue>2</issue><spage>333</spage><epage>346</epage><pages>333-346</pages><issn>0014-4886</issn><eissn>1090-2430</eissn><abstract>Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of motor neurons (MNs) that causes paralysis. Some forms of ALS are inherited, caused by mutations in the superoxide dismutase-1 ( SOD1) gene. The mechanisms of human mutant SOD1 (mSOD1) toxicity to MNs are unresolved. Mitochondria in MNs might be key sites for ALS pathogenesis, but cause–effect relationships between mSOD1 and mitochondriopathy need further study. We used transgenic mSOD1 mice to test the hypothesis that the mitochondrial permeability transition pore (mPTP) is involved in the MN degeneration of ALS. Components of the multi-protein mPTP are expressed highly in mouse MNs, including the voltage-dependent anion channel, adenine nucleotide translocator (ANT), and cyclophilin D (CyPD), and are present in mitochondria marked by manganese SOD. MNs in pre-symptomatic mSOD1-G93A mice form swollen megamitochondria with CyPD immunoreactivity. Early disease is associated with mitochondrial cristae remodeling and matrix vesiculation in ventral horn neuron dendrites. MN cell bodies accumulate mitochondria derived from the distal axons projecting to skeletal muscle. Incipient disease in spinal cord is associated with increased oxidative and nitrative stress, indicated by protein carbonyls and nitration of CyPD and ANT. Reducing the levels of CyPD by genetic ablation significantly delays disease onset and extends the lifespan of G93A-mSOD1 mice expressing high and low levels of mutant protein in a gender-dependent pattern. These results demonstrate that mitochondria have causal roles in the disease mechanisms in MNs in ALS mice. This work defines a new mitochondrial mechanism for MN degeneration in ALS.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19272377</pmid><doi>10.1016/j.expneurol.2009.02.015</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-4886
ispartof Experimental neurology, 2009-08, Vol.218 (2), p.333-346
issn 0014-4886
1090-2430
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2710399
source ScienceDirect Freedom Collection
subjects Adenine nucleotide translocase
Adenine Nucleotide Translocator 1 - genetics
Adenine Nucleotide Translocator 1 - metabolism
Amyotrophic Lateral Sclerosis - genetics
Amyotrophic Lateral Sclerosis - metabolism
Amyotrophic Lateral Sclerosis - pathology
Animals
Blotting, Western
Cristae remodeling
Cyclophilins - genetics
Cyclophilins - metabolism
Disease Models, Animal
Genotype
Immunohistochemistry
Mice
Mice, Transgenic
Microscopy, Electron
Mitochondria - genetics
Mitochondria - metabolism
Mitochondria - ultrastructure
Mitochondrial Membrane Transport Proteins - genetics
Mitochondrial Membrane Transport Proteins - metabolism
Mitochondrial Permeability Transition Pore
Motor Neurons - metabolism
Motor Neurons - ultrastructure
Mutant Sod1
Mutation
Nitration
Peptidyl-Prolyl Isomerase F
Porin
ppif
Superoxide Dismutase - genetics
Superoxide Dismutase - metabolism
Superoxide Dismutase-1
Voltage-dependent anion channel
Voltage-Dependent Anion Channels - genetics
Voltage-Dependent Anion Channels - metabolism
title The mitochondrial permeability transition pore in motor neurons: Involvement in the pathobiology of ALS mice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T04%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mitochondrial%20permeability%20transition%20pore%20in%20motor%20neurons:%20Involvement%20in%20the%20pathobiology%20of%20ALS%20mice&rft.jtitle=Experimental%20neurology&rft.au=Martin,%20Lee%20J.&rft.date=2009-08-01&rft.volume=218&rft.issue=2&rft.spage=333&rft.epage=346&rft.pages=333-346&rft.issn=0014-4886&rft.eissn=1090-2430&rft_id=info:doi/10.1016/j.expneurol.2009.02.015&rft_dat=%3Cproquest_pubme%3E67484839%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c570t-9142aba37c2857638edf2296f334ef1bab084b8b6b663651aa9b4195edd930603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20138643&rft_id=info:pmid/19272377&rfr_iscdi=true