Loading…
The mitochondrial permeability transition pore in motor neurons: Involvement in the pathobiology of ALS mice
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of motor neurons (MNs) that causes paralysis. Some forms of ALS are inherited, caused by mutations in the superoxide dismutase-1 ( SOD1) gene. The mechanisms of human mutant SOD1 (mSOD1) toxicity to MNs are unresolved. Mitochon...
Saved in:
Published in: | Experimental neurology 2009-08, Vol.218 (2), p.333-346 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c570t-9142aba37c2857638edf2296f334ef1bab084b8b6b663651aa9b4195edd930603 |
---|---|
cites | cdi_FETCH-LOGICAL-c570t-9142aba37c2857638edf2296f334ef1bab084b8b6b663651aa9b4195edd930603 |
container_end_page | 346 |
container_issue | 2 |
container_start_page | 333 |
container_title | Experimental neurology |
container_volume | 218 |
creator | Martin, Lee J. Gertz, Barry Pan, Yan Price, Ann C. Molkentin, Jeffery D. Chang, Qing |
description | Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of motor neurons (MNs) that causes paralysis. Some forms of ALS are inherited, caused by mutations in the
superoxide dismutase-1 (
SOD1) gene. The mechanisms of human mutant SOD1 (mSOD1) toxicity to MNs are unresolved. Mitochondria in MNs might be key sites for ALS pathogenesis, but cause–effect relationships between mSOD1 and mitochondriopathy need further study. We used transgenic mSOD1 mice to test the hypothesis that the mitochondrial permeability transition pore (mPTP) is involved in the MN degeneration of ALS. Components of the multi-protein mPTP are expressed highly in mouse MNs, including the voltage-dependent anion channel, adenine nucleotide translocator (ANT), and cyclophilin D (CyPD), and are present in mitochondria marked by manganese SOD. MNs in pre-symptomatic mSOD1-G93A mice form swollen megamitochondria with CyPD immunoreactivity. Early disease is associated with mitochondrial cristae remodeling and matrix vesiculation in ventral horn neuron dendrites. MN cell bodies accumulate mitochondria derived from the distal axons projecting to skeletal muscle. Incipient disease in spinal cord is associated with increased oxidative and nitrative stress, indicated by protein carbonyls and nitration of CyPD and ANT. Reducing the levels of CyPD by genetic ablation significantly delays disease onset and extends the lifespan of G93A-mSOD1 mice expressing high and low levels of mutant protein in a gender-dependent pattern. These results demonstrate that mitochondria have causal roles in the disease mechanisms in MNs in ALS mice. This work defines a new mitochondrial mechanism for MN degeneration in ALS. |
doi_str_mv | 10.1016/j.expneurol.2009.02.015 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2710399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014488609000612</els_id><sourcerecordid>67484839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-9142aba37c2857638edf2296f334ef1bab084b8b6b663651aa9b4195edd930603</originalsourceid><addsrcrecordid>eNqFkU2P0zAQhiMEYsvCXwCfuCWMP-LEHJCqFR8rVeLAcracZLJ1ldjBdqvtv8el1QKnPc1hnnnfmXmL4h2FigKVH3YVPiwO98FPFQNQFbAKaP2sWFFQUDLB4XmxAqCiFG0rr4pXMe4gg4I1L4srqljDeNOsiului2S2yfdb74ZgzUQWDDOazk42HUkKxkWbrHdk8QGJdWT2yQfyx9zFj-TWHfx0wBldOnVT1ltM2vrO-snfH4kfyXrzI3v0-Lp4MZop4ptLvS5-fvl8d_Ot3Hz_enuz3pR93UAqFRXMdIY3PWvrRvIWh5ExJUfOBY60Mx20oms72UnJZU2NUZ2gqsZhUBwk8Ovi01l32XczDn1eLZhJL8HOJhy1N1b_33F2q-_9QbOGAlcqC7y_CAT_a48x6dnGHqfJOPT7qGUjWtHyp0EGlLdS8Aw2Z7APPsaA4-M2FPQpUr3Tj5HqU6QamM6R5sm3_x7zd-6SYQbWZwDzSw8Wg469RdfjYAP2SQ_ePmnyG20Uuhg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20138643</pqid></control><display><type>article</type><title>The mitochondrial permeability transition pore in motor neurons: Involvement in the pathobiology of ALS mice</title><source>ScienceDirect Freedom Collection</source><creator>Martin, Lee J. ; Gertz, Barry ; Pan, Yan ; Price, Ann C. ; Molkentin, Jeffery D. ; Chang, Qing</creator><creatorcontrib>Martin, Lee J. ; Gertz, Barry ; Pan, Yan ; Price, Ann C. ; Molkentin, Jeffery D. ; Chang, Qing</creatorcontrib><description>Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of motor neurons (MNs) that causes paralysis. Some forms of ALS are inherited, caused by mutations in the
superoxide dismutase-1 (
SOD1) gene. The mechanisms of human mutant SOD1 (mSOD1) toxicity to MNs are unresolved. Mitochondria in MNs might be key sites for ALS pathogenesis, but cause–effect relationships between mSOD1 and mitochondriopathy need further study. We used transgenic mSOD1 mice to test the hypothesis that the mitochondrial permeability transition pore (mPTP) is involved in the MN degeneration of ALS. Components of the multi-protein mPTP are expressed highly in mouse MNs, including the voltage-dependent anion channel, adenine nucleotide translocator (ANT), and cyclophilin D (CyPD), and are present in mitochondria marked by manganese SOD. MNs in pre-symptomatic mSOD1-G93A mice form swollen megamitochondria with CyPD immunoreactivity. Early disease is associated with mitochondrial cristae remodeling and matrix vesiculation in ventral horn neuron dendrites. MN cell bodies accumulate mitochondria derived from the distal axons projecting to skeletal muscle. Incipient disease in spinal cord is associated with increased oxidative and nitrative stress, indicated by protein carbonyls and nitration of CyPD and ANT. Reducing the levels of CyPD by genetic ablation significantly delays disease onset and extends the lifespan of G93A-mSOD1 mice expressing high and low levels of mutant protein in a gender-dependent pattern. These results demonstrate that mitochondria have causal roles in the disease mechanisms in MNs in ALS mice. This work defines a new mitochondrial mechanism for MN degeneration in ALS.</description><identifier>ISSN: 0014-4886</identifier><identifier>EISSN: 1090-2430</identifier><identifier>DOI: 10.1016/j.expneurol.2009.02.015</identifier><identifier>PMID: 19272377</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenine nucleotide translocase ; Adenine Nucleotide Translocator 1 - genetics ; Adenine Nucleotide Translocator 1 - metabolism ; Amyotrophic Lateral Sclerosis - genetics ; Amyotrophic Lateral Sclerosis - metabolism ; Amyotrophic Lateral Sclerosis - pathology ; Animals ; Blotting, Western ; Cristae remodeling ; Cyclophilins - genetics ; Cyclophilins - metabolism ; Disease Models, Animal ; Genotype ; Immunohistochemistry ; Mice ; Mice, Transgenic ; Microscopy, Electron ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondria - ultrastructure ; Mitochondrial Membrane Transport Proteins - genetics ; Mitochondrial Membrane Transport Proteins - metabolism ; Mitochondrial Permeability Transition Pore ; Motor Neurons - metabolism ; Motor Neurons - ultrastructure ; Mutant Sod1 ; Mutation ; Nitration ; Peptidyl-Prolyl Isomerase F ; Porin ; ppif ; Superoxide Dismutase - genetics ; Superoxide Dismutase - metabolism ; Superoxide Dismutase-1 ; Voltage-dependent anion channel ; Voltage-Dependent Anion Channels - genetics ; Voltage-Dependent Anion Channels - metabolism</subject><ispartof>Experimental neurology, 2009-08, Vol.218 (2), p.333-346</ispartof><rights>2009 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-9142aba37c2857638edf2296f334ef1bab084b8b6b663651aa9b4195edd930603</citedby><cites>FETCH-LOGICAL-c570t-9142aba37c2857638edf2296f334ef1bab084b8b6b663651aa9b4195edd930603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27900,27901</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19272377$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin, Lee J.</creatorcontrib><creatorcontrib>Gertz, Barry</creatorcontrib><creatorcontrib>Pan, Yan</creatorcontrib><creatorcontrib>Price, Ann C.</creatorcontrib><creatorcontrib>Molkentin, Jeffery D.</creatorcontrib><creatorcontrib>Chang, Qing</creatorcontrib><title>The mitochondrial permeability transition pore in motor neurons: Involvement in the pathobiology of ALS mice</title><title>Experimental neurology</title><addtitle>Exp Neurol</addtitle><description>Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of motor neurons (MNs) that causes paralysis. Some forms of ALS are inherited, caused by mutations in the
superoxide dismutase-1 (
SOD1) gene. The mechanisms of human mutant SOD1 (mSOD1) toxicity to MNs are unresolved. Mitochondria in MNs might be key sites for ALS pathogenesis, but cause–effect relationships between mSOD1 and mitochondriopathy need further study. We used transgenic mSOD1 mice to test the hypothesis that the mitochondrial permeability transition pore (mPTP) is involved in the MN degeneration of ALS. Components of the multi-protein mPTP are expressed highly in mouse MNs, including the voltage-dependent anion channel, adenine nucleotide translocator (ANT), and cyclophilin D (CyPD), and are present in mitochondria marked by manganese SOD. MNs in pre-symptomatic mSOD1-G93A mice form swollen megamitochondria with CyPD immunoreactivity. Early disease is associated with mitochondrial cristae remodeling and matrix vesiculation in ventral horn neuron dendrites. MN cell bodies accumulate mitochondria derived from the distal axons projecting to skeletal muscle. Incipient disease in spinal cord is associated with increased oxidative and nitrative stress, indicated by protein carbonyls and nitration of CyPD and ANT. Reducing the levels of CyPD by genetic ablation significantly delays disease onset and extends the lifespan of G93A-mSOD1 mice expressing high and low levels of mutant protein in a gender-dependent pattern. These results demonstrate that mitochondria have causal roles in the disease mechanisms in MNs in ALS mice. This work defines a new mitochondrial mechanism for MN degeneration in ALS.</description><subject>Adenine nucleotide translocase</subject><subject>Adenine Nucleotide Translocator 1 - genetics</subject><subject>Adenine Nucleotide Translocator 1 - metabolism</subject><subject>Amyotrophic Lateral Sclerosis - genetics</subject><subject>Amyotrophic Lateral Sclerosis - metabolism</subject><subject>Amyotrophic Lateral Sclerosis - pathology</subject><subject>Animals</subject><subject>Blotting, Western</subject><subject>Cristae remodeling</subject><subject>Cyclophilins - genetics</subject><subject>Cyclophilins - metabolism</subject><subject>Disease Models, Animal</subject><subject>Genotype</subject><subject>Immunohistochemistry</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microscopy, Electron</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - ultrastructure</subject><subject>Mitochondrial Membrane Transport Proteins - genetics</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Mitochondrial Permeability Transition Pore</subject><subject>Motor Neurons - metabolism</subject><subject>Motor Neurons - ultrastructure</subject><subject>Mutant Sod1</subject><subject>Mutation</subject><subject>Nitration</subject><subject>Peptidyl-Prolyl Isomerase F</subject><subject>Porin</subject><subject>ppif</subject><subject>Superoxide Dismutase - genetics</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Superoxide Dismutase-1</subject><subject>Voltage-dependent anion channel</subject><subject>Voltage-Dependent Anion Channels - genetics</subject><subject>Voltage-Dependent Anion Channels - metabolism</subject><issn>0014-4886</issn><issn>1090-2430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkU2P0zAQhiMEYsvCXwCfuCWMP-LEHJCqFR8rVeLAcracZLJ1ldjBdqvtv8el1QKnPc1hnnnfmXmL4h2FigKVH3YVPiwO98FPFQNQFbAKaP2sWFFQUDLB4XmxAqCiFG0rr4pXMe4gg4I1L4srqljDeNOsiului2S2yfdb74ZgzUQWDDOazk42HUkKxkWbrHdk8QGJdWT2yQfyx9zFj-TWHfx0wBldOnVT1ltM2vrO-snfH4kfyXrzI3v0-Lp4MZop4ptLvS5-fvl8d_Ot3Hz_enuz3pR93UAqFRXMdIY3PWvrRvIWh5ExJUfOBY60Mx20oms72UnJZU2NUZ2gqsZhUBwk8Ovi01l32XczDn1eLZhJL8HOJhy1N1b_33F2q-_9QbOGAlcqC7y_CAT_a48x6dnGHqfJOPT7qGUjWtHyp0EGlLdS8Aw2Z7APPsaA4-M2FPQpUr3Tj5HqU6QamM6R5sm3_x7zd-6SYQbWZwDzSw8Wg469RdfjYAP2SQ_ePmnyG20Uuhg</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Martin, Lee J.</creator><creator>Gertz, Barry</creator><creator>Pan, Yan</creator><creator>Price, Ann C.</creator><creator>Molkentin, Jeffery D.</creator><creator>Chang, Qing</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090801</creationdate><title>The mitochondrial permeability transition pore in motor neurons: Involvement in the pathobiology of ALS mice</title><author>Martin, Lee J. ; Gertz, Barry ; Pan, Yan ; Price, Ann C. ; Molkentin, Jeffery D. ; Chang, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-9142aba37c2857638edf2296f334ef1bab084b8b6b663651aa9b4195edd930603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adenine nucleotide translocase</topic><topic>Adenine Nucleotide Translocator 1 - genetics</topic><topic>Adenine Nucleotide Translocator 1 - metabolism</topic><topic>Amyotrophic Lateral Sclerosis - genetics</topic><topic>Amyotrophic Lateral Sclerosis - metabolism</topic><topic>Amyotrophic Lateral Sclerosis - pathology</topic><topic>Animals</topic><topic>Blotting, Western</topic><topic>Cristae remodeling</topic><topic>Cyclophilins - genetics</topic><topic>Cyclophilins - metabolism</topic><topic>Disease Models, Animal</topic><topic>Genotype</topic><topic>Immunohistochemistry</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microscopy, Electron</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - ultrastructure</topic><topic>Mitochondrial Membrane Transport Proteins - genetics</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Mitochondrial Permeability Transition Pore</topic><topic>Motor Neurons - metabolism</topic><topic>Motor Neurons - ultrastructure</topic><topic>Mutant Sod1</topic><topic>Mutation</topic><topic>Nitration</topic><topic>Peptidyl-Prolyl Isomerase F</topic><topic>Porin</topic><topic>ppif</topic><topic>Superoxide Dismutase - genetics</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Superoxide Dismutase-1</topic><topic>Voltage-dependent anion channel</topic><topic>Voltage-Dependent Anion Channels - genetics</topic><topic>Voltage-Dependent Anion Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Lee J.</creatorcontrib><creatorcontrib>Gertz, Barry</creatorcontrib><creatorcontrib>Pan, Yan</creatorcontrib><creatorcontrib>Price, Ann C.</creatorcontrib><creatorcontrib>Molkentin, Jeffery D.</creatorcontrib><creatorcontrib>Chang, Qing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Lee J.</au><au>Gertz, Barry</au><au>Pan, Yan</au><au>Price, Ann C.</au><au>Molkentin, Jeffery D.</au><au>Chang, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mitochondrial permeability transition pore in motor neurons: Involvement in the pathobiology of ALS mice</atitle><jtitle>Experimental neurology</jtitle><addtitle>Exp Neurol</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>218</volume><issue>2</issue><spage>333</spage><epage>346</epage><pages>333-346</pages><issn>0014-4886</issn><eissn>1090-2430</eissn><abstract>Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of motor neurons (MNs) that causes paralysis. Some forms of ALS are inherited, caused by mutations in the
superoxide dismutase-1 (
SOD1) gene. The mechanisms of human mutant SOD1 (mSOD1) toxicity to MNs are unresolved. Mitochondria in MNs might be key sites for ALS pathogenesis, but cause–effect relationships between mSOD1 and mitochondriopathy need further study. We used transgenic mSOD1 mice to test the hypothesis that the mitochondrial permeability transition pore (mPTP) is involved in the MN degeneration of ALS. Components of the multi-protein mPTP are expressed highly in mouse MNs, including the voltage-dependent anion channel, adenine nucleotide translocator (ANT), and cyclophilin D (CyPD), and are present in mitochondria marked by manganese SOD. MNs in pre-symptomatic mSOD1-G93A mice form swollen megamitochondria with CyPD immunoreactivity. Early disease is associated with mitochondrial cristae remodeling and matrix vesiculation in ventral horn neuron dendrites. MN cell bodies accumulate mitochondria derived from the distal axons projecting to skeletal muscle. Incipient disease in spinal cord is associated with increased oxidative and nitrative stress, indicated by protein carbonyls and nitration of CyPD and ANT. Reducing the levels of CyPD by genetic ablation significantly delays disease onset and extends the lifespan of G93A-mSOD1 mice expressing high and low levels of mutant protein in a gender-dependent pattern. These results demonstrate that mitochondria have causal roles in the disease mechanisms in MNs in ALS mice. This work defines a new mitochondrial mechanism for MN degeneration in ALS.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19272377</pmid><doi>10.1016/j.expneurol.2009.02.015</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-4886 |
ispartof | Experimental neurology, 2009-08, Vol.218 (2), p.333-346 |
issn | 0014-4886 1090-2430 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2710399 |
source | ScienceDirect Freedom Collection |
subjects | Adenine nucleotide translocase Adenine Nucleotide Translocator 1 - genetics Adenine Nucleotide Translocator 1 - metabolism Amyotrophic Lateral Sclerosis - genetics Amyotrophic Lateral Sclerosis - metabolism Amyotrophic Lateral Sclerosis - pathology Animals Blotting, Western Cristae remodeling Cyclophilins - genetics Cyclophilins - metabolism Disease Models, Animal Genotype Immunohistochemistry Mice Mice, Transgenic Microscopy, Electron Mitochondria - genetics Mitochondria - metabolism Mitochondria - ultrastructure Mitochondrial Membrane Transport Proteins - genetics Mitochondrial Membrane Transport Proteins - metabolism Mitochondrial Permeability Transition Pore Motor Neurons - metabolism Motor Neurons - ultrastructure Mutant Sod1 Mutation Nitration Peptidyl-Prolyl Isomerase F Porin ppif Superoxide Dismutase - genetics Superoxide Dismutase - metabolism Superoxide Dismutase-1 Voltage-dependent anion channel Voltage-Dependent Anion Channels - genetics Voltage-Dependent Anion Channels - metabolism |
title | The mitochondrial permeability transition pore in motor neurons: Involvement in the pathobiology of ALS mice |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T04%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mitochondrial%20permeability%20transition%20pore%20in%20motor%20neurons:%20Involvement%20in%20the%20pathobiology%20of%20ALS%20mice&rft.jtitle=Experimental%20neurology&rft.au=Martin,%20Lee%20J.&rft.date=2009-08-01&rft.volume=218&rft.issue=2&rft.spage=333&rft.epage=346&rft.pages=333-346&rft.issn=0014-4886&rft.eissn=1090-2430&rft_id=info:doi/10.1016/j.expneurol.2009.02.015&rft_dat=%3Cproquest_pubme%3E67484839%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c570t-9142aba37c2857638edf2296f334ef1bab084b8b6b663651aa9b4195edd930603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20138643&rft_id=info:pmid/19272377&rfr_iscdi=true |