Loading…
The SPX domain of the yeast low-affinity phosphate transporter Pho90 regulates transport activity
Yeast has two phosphate‐uptake systems that complement each other: the high‐affinity transporters (Pho84 and Pho89) are active under phosphate starvation, whereas Pho87 and Pho90 are low‐affinity transporters that function when phosphate is abundant. Here, we report new regulatory functions of the a...
Saved in:
Published in: | EMBO reports 2009-09, Vol.10 (9), p.1003-1008 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Yeast has two phosphate‐uptake systems that complement each other: the high‐affinity transporters (Pho84 and Pho89) are active under phosphate starvation, whereas Pho87 and Pho90 are low‐affinity transporters that function when phosphate is abundant. Here, we report new regulatory functions of the amino‐terminal SPX domain of Pho87 and Pho90. By studying truncated versions of Pho87 and Pho90, we show that the SPX domain limits the phosphate‐uptake velocity, suppresses phosphate efflux and affects the regulation of the phosphate signal transduction pathway. Furthermore, split‐ubiquitin assays and co‐immunoprecipitation suggest that the SPX domain of both Pho90 and Pho87 interacts physically with the regulatory protein Spl2. This work suggests that the SPX domain inhibits low‐affinity phosphate transport through a physical interaction with Spl2. |
---|---|
ISSN: | 1469-221X 1469-3178 |
DOI: | 10.1038/embor.2009.105 |