Loading…

Derivation and Validation of a Prognostic Model for Pulmonary Embolism

An objective and simple prognostic model for patients with pulmonary embolism could be helpful in guiding initial intensity of treatment. To develop a clinical prediction rule that accurately classifies patients with pulmonary embolism into categories of increasing risk of mortality and other advers...

Full description

Saved in:
Bibliographic Details
Published in:American journal of respiratory and critical care medicine 2005-10, Vol.172 (8), p.1041-1046
Main Authors: Aujesky, Drahomir, Obrosky, D. Scott, Stone, Roslyn A, Auble, Thomas E, Perrier, Arnaud, Cornuz, Jacques, Roy, Pierre-Marie, Fine, Michael J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c555t-93228fb513648c2b930742f0ce602f1aa51073999368df238671921957a0e15b3
cites cdi_FETCH-LOGICAL-c555t-93228fb513648c2b930742f0ce602f1aa51073999368df238671921957a0e15b3
container_end_page 1046
container_issue 8
container_start_page 1041
container_title American journal of respiratory and critical care medicine
container_volume 172
creator Aujesky, Drahomir
Obrosky, D. Scott
Stone, Roslyn A
Auble, Thomas E
Perrier, Arnaud
Cornuz, Jacques
Roy, Pierre-Marie
Fine, Michael J
description An objective and simple prognostic model for patients with pulmonary embolism could be helpful in guiding initial intensity of treatment. To develop a clinical prediction rule that accurately classifies patients with pulmonary embolism into categories of increasing risk of mortality and other adverse medical outcomes. We randomly allocated 15,531 inpatient discharges with pulmonary embolism from 186 Pennsylvania hospitals to derivation (67%) and internal validation (33%) samples. We derived our prediction rule using logistic regression with 30-day mortality as the primary outcome, and patient demographic and clinical data routinely available at presentation as potential predictor variables. We externally validated the rule in 221 inpatients with pulmonary embolism from Switzerland and France. We compared mortality and nonfatal adverse medical outcomes across the derivation and two validation samples. The prediction rule is based on 11 simple patient characteristics that were independently associated with mortality and stratifies patients with pulmonary embolism into five severity classes, with 30-day mortality rates of 0-1.6% in class I, 1.7-3.5% in class II, 3.2-7.1% in class III, 4.0-11.4% in class IV, and 10.0-24.5% in class V across the derivation and validation samples. Inpatient death and nonfatal complications were
doi_str_mv 10.1164/rccm.200506-862OC
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2718410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68678280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-93228fb513648c2b930742f0ce602f1aa51073999368df238671921957a0e15b3</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxSMEoqXwAbigCAkOSCkz_pPYFyS0bQGpqD0A4mY5jrPrlRMXO2nFt8chKwqcbGt-8-aNX1E8RzhFrNnbaMxwSgA41JWoydXmQXGMnPKKyQYe5js0tGJMfj8qnqS0B0AiEB4XR1gDAQFwXFyc2ehu9eTCWOqxK79p77r1GfpSl9cxbMeQJmfKz6GzvuxDLK9nP4RRx5_l-dAG79LwtHjUa5_ss8N5Uny9OP-y-VhdXn34tHl_WRnO-VRJSojoW460ZsKQVlJoGOnB2GyoR635YllKSWvR9YSKukFJUPJGg0Xe0pPi3ap7M7eD7Ywdp6i9uoluyHZU0E79WxndTm3DrSINCoaQBV4fBGL4Mds0qcElY73Xow1zUnUeKYhYwJf_gfswxzEvp1DKmtL8fRnCFTIxpBRt_8cJgloiUktEao1I_Y4o97z4e4X7jkMmGXh1AHQy2vdRj8ale64hwFnTZO7Nyu3cdnfnolVp0N5nWVR6vwzOqBLZCkP6C4oap3s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199633800</pqid></control><display><type>article</type><title>Derivation and Validation of a Prognostic Model for Pulmonary Embolism</title><source>Freely Accessible Science Journals - check A-Z of ejournals</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Aujesky, Drahomir ; Obrosky, D. Scott ; Stone, Roslyn A ; Auble, Thomas E ; Perrier, Arnaud ; Cornuz, Jacques ; Roy, Pierre-Marie ; Fine, Michael J</creator><creatorcontrib>Aujesky, Drahomir ; Obrosky, D. Scott ; Stone, Roslyn A ; Auble, Thomas E ; Perrier, Arnaud ; Cornuz, Jacques ; Roy, Pierre-Marie ; Fine, Michael J</creatorcontrib><description>An objective and simple prognostic model for patients with pulmonary embolism could be helpful in guiding initial intensity of treatment. To develop a clinical prediction rule that accurately classifies patients with pulmonary embolism into categories of increasing risk of mortality and other adverse medical outcomes. We randomly allocated 15,531 inpatient discharges with pulmonary embolism from 186 Pennsylvania hospitals to derivation (67%) and internal validation (33%) samples. We derived our prediction rule using logistic regression with 30-day mortality as the primary outcome, and patient demographic and clinical data routinely available at presentation as potential predictor variables. We externally validated the rule in 221 inpatients with pulmonary embolism from Switzerland and France. We compared mortality and nonfatal adverse medical outcomes across the derivation and two validation samples. The prediction rule is based on 11 simple patient characteristics that were independently associated with mortality and stratifies patients with pulmonary embolism into five severity classes, with 30-day mortality rates of 0-1.6% in class I, 1.7-3.5% in class II, 3.2-7.1% in class III, 4.0-11.4% in class IV, and 10.0-24.5% in class V across the derivation and validation samples. Inpatient death and nonfatal complications were &lt;or= 1.1% among patients in class I and &lt;or= 1.9% among patients in class II. Our rule accurately classifies patients with pulmonary embolism into classes of increasing risk of mortality and other adverse medical outcomes. Further validation of the rule is important before its implementation as a decision aid to guide the initial management of patients with pulmonary embolism.</description><identifier>ISSN: 1073-449X</identifier><identifier>EISSN: 1535-4970</identifier><identifier>DOI: 10.1164/rccm.200506-862OC</identifier><identifier>PMID: 16020800</identifier><language>eng</language><publisher>New York, NY: Am Thoracic Soc</publisher><subject>Acute Disease ; Aged ; Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Biological and medical sciences ; Cause of Death ; Comorbidity ; Decision Support Techniques ; Discriminant Analysis ; Female ; France - epidemiology ; Hospitals ; Hospitals, University ; Humans ; Intensive care medicine ; J. Pulmonary Vascular Disease ; Laboratories ; Logistic Models ; Male ; Medical sciences ; Metabolic diseases ; Mortality ; Obesity ; Patients ; Pennsylvania - epidemiology ; Pneumology ; Predictive Value of Tests ; Prognosis ; Pulmonary Embolism - classification ; Pulmonary Embolism - complications ; Pulmonary Embolism - diagnosis ; Pulmonary Embolism - mortality ; Pulmonary Embolism - therapy ; Pulmonary embolisms ; Pulmonary hypertension. Acute cor pulmonale. Pulmonary embolism. Pulmonary vascular diseases ; Regression analysis ; Risk Assessment - organization &amp; administration ; Risk Factors ; ROC Curve ; Severity of Illness Index ; Switzerland - epidemiology ; Tomography</subject><ispartof>American journal of respiratory and critical care medicine, 2005-10, Vol.172 (8), p.1041-1046</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright American Thoracic Society Oct 15, 2005</rights><rights>Copyright © 2005, American Thoracic Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-93228fb513648c2b930742f0ce602f1aa51073999368df238671921957a0e15b3</citedby><cites>FETCH-LOGICAL-c555t-93228fb513648c2b930742f0ce602f1aa51073999368df238671921957a0e15b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17205477$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16020800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aujesky, Drahomir</creatorcontrib><creatorcontrib>Obrosky, D. Scott</creatorcontrib><creatorcontrib>Stone, Roslyn A</creatorcontrib><creatorcontrib>Auble, Thomas E</creatorcontrib><creatorcontrib>Perrier, Arnaud</creatorcontrib><creatorcontrib>Cornuz, Jacques</creatorcontrib><creatorcontrib>Roy, Pierre-Marie</creatorcontrib><creatorcontrib>Fine, Michael J</creatorcontrib><title>Derivation and Validation of a Prognostic Model for Pulmonary Embolism</title><title>American journal of respiratory and critical care medicine</title><addtitle>Am J Respir Crit Care Med</addtitle><description>An objective and simple prognostic model for patients with pulmonary embolism could be helpful in guiding initial intensity of treatment. To develop a clinical prediction rule that accurately classifies patients with pulmonary embolism into categories of increasing risk of mortality and other adverse medical outcomes. We randomly allocated 15,531 inpatient discharges with pulmonary embolism from 186 Pennsylvania hospitals to derivation (67%) and internal validation (33%) samples. We derived our prediction rule using logistic regression with 30-day mortality as the primary outcome, and patient demographic and clinical data routinely available at presentation as potential predictor variables. We externally validated the rule in 221 inpatients with pulmonary embolism from Switzerland and France. We compared mortality and nonfatal adverse medical outcomes across the derivation and two validation samples. The prediction rule is based on 11 simple patient characteristics that were independently associated with mortality and stratifies patients with pulmonary embolism into five severity classes, with 30-day mortality rates of 0-1.6% in class I, 1.7-3.5% in class II, 3.2-7.1% in class III, 4.0-11.4% in class IV, and 10.0-24.5% in class V across the derivation and validation samples. Inpatient death and nonfatal complications were &lt;or= 1.1% among patients in class I and &lt;or= 1.9% among patients in class II. Our rule accurately classifies patients with pulmonary embolism into classes of increasing risk of mortality and other adverse medical outcomes. Further validation of the rule is important before its implementation as a decision aid to guide the initial management of patients with pulmonary embolism.</description><subject>Acute Disease</subject><subject>Aged</subject><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Biological and medical sciences</subject><subject>Cause of Death</subject><subject>Comorbidity</subject><subject>Decision Support Techniques</subject><subject>Discriminant Analysis</subject><subject>Female</subject><subject>France - epidemiology</subject><subject>Hospitals</subject><subject>Hospitals, University</subject><subject>Humans</subject><subject>Intensive care medicine</subject><subject>J. Pulmonary Vascular Disease</subject><subject>Laboratories</subject><subject>Logistic Models</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Metabolic diseases</subject><subject>Mortality</subject><subject>Obesity</subject><subject>Patients</subject><subject>Pennsylvania - epidemiology</subject><subject>Pneumology</subject><subject>Predictive Value of Tests</subject><subject>Prognosis</subject><subject>Pulmonary Embolism - classification</subject><subject>Pulmonary Embolism - complications</subject><subject>Pulmonary Embolism - diagnosis</subject><subject>Pulmonary Embolism - mortality</subject><subject>Pulmonary Embolism - therapy</subject><subject>Pulmonary embolisms</subject><subject>Pulmonary hypertension. Acute cor pulmonale. Pulmonary embolism. Pulmonary vascular diseases</subject><subject>Regression analysis</subject><subject>Risk Assessment - organization &amp; administration</subject><subject>Risk Factors</subject><subject>ROC Curve</subject><subject>Severity of Illness Index</subject><subject>Switzerland - epidemiology</subject><subject>Tomography</subject><issn>1073-449X</issn><issn>1535-4970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpdkU9v1DAQxSMEoqXwAbigCAkOSCkz_pPYFyS0bQGpqD0A4mY5jrPrlRMXO2nFt8chKwqcbGt-8-aNX1E8RzhFrNnbaMxwSgA41JWoydXmQXGMnPKKyQYe5js0tGJMfj8qnqS0B0AiEB4XR1gDAQFwXFyc2ehu9eTCWOqxK79p77r1GfpSl9cxbMeQJmfKz6GzvuxDLK9nP4RRx5_l-dAG79LwtHjUa5_ss8N5Uny9OP-y-VhdXn34tHl_WRnO-VRJSojoW460ZsKQVlJoGOnB2GyoR635YllKSWvR9YSKukFJUPJGg0Xe0pPi3ap7M7eD7Ywdp6i9uoluyHZU0E79WxndTm3DrSINCoaQBV4fBGL4Mds0qcElY73Xow1zUnUeKYhYwJf_gfswxzEvp1DKmtL8fRnCFTIxpBRt_8cJgloiUktEao1I_Y4o97z4e4X7jkMmGXh1AHQy2vdRj8ale64hwFnTZO7Nyu3cdnfnolVp0N5nWVR6vwzOqBLZCkP6C4oap3s</recordid><startdate>20051015</startdate><enddate>20051015</enddate><creator>Aujesky, Drahomir</creator><creator>Obrosky, D. Scott</creator><creator>Stone, Roslyn A</creator><creator>Auble, Thomas E</creator><creator>Perrier, Arnaud</creator><creator>Cornuz, Jacques</creator><creator>Roy, Pierre-Marie</creator><creator>Fine, Michael J</creator><general>Am Thoracic Soc</general><general>American Lung Association</general><general>American Thoracic Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20051015</creationdate><title>Derivation and Validation of a Prognostic Model for Pulmonary Embolism</title><author>Aujesky, Drahomir ; Obrosky, D. Scott ; Stone, Roslyn A ; Auble, Thomas E ; Perrier, Arnaud ; Cornuz, Jacques ; Roy, Pierre-Marie ; Fine, Michael J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-93228fb513648c2b930742f0ce602f1aa51073999368df238671921957a0e15b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acute Disease</topic><topic>Aged</topic><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Biological and medical sciences</topic><topic>Cause of Death</topic><topic>Comorbidity</topic><topic>Decision Support Techniques</topic><topic>Discriminant Analysis</topic><topic>Female</topic><topic>France - epidemiology</topic><topic>Hospitals</topic><topic>Hospitals, University</topic><topic>Humans</topic><topic>Intensive care medicine</topic><topic>J. Pulmonary Vascular Disease</topic><topic>Laboratories</topic><topic>Logistic Models</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Metabolic diseases</topic><topic>Mortality</topic><topic>Obesity</topic><topic>Patients</topic><topic>Pennsylvania - epidemiology</topic><topic>Pneumology</topic><topic>Predictive Value of Tests</topic><topic>Prognosis</topic><topic>Pulmonary Embolism - classification</topic><topic>Pulmonary Embolism - complications</topic><topic>Pulmonary Embolism - diagnosis</topic><topic>Pulmonary Embolism - mortality</topic><topic>Pulmonary Embolism - therapy</topic><topic>Pulmonary embolisms</topic><topic>Pulmonary hypertension. Acute cor pulmonale. Pulmonary embolism. Pulmonary vascular diseases</topic><topic>Regression analysis</topic><topic>Risk Assessment - organization &amp; administration</topic><topic>Risk Factors</topic><topic>ROC Curve</topic><topic>Severity of Illness Index</topic><topic>Switzerland - epidemiology</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aujesky, Drahomir</creatorcontrib><creatorcontrib>Obrosky, D. Scott</creatorcontrib><creatorcontrib>Stone, Roslyn A</creatorcontrib><creatorcontrib>Auble, Thomas E</creatorcontrib><creatorcontrib>Perrier, Arnaud</creatorcontrib><creatorcontrib>Cornuz, Jacques</creatorcontrib><creatorcontrib>Roy, Pierre-Marie</creatorcontrib><creatorcontrib>Fine, Michael J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>British Nursing Database</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of respiratory and critical care medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aujesky, Drahomir</au><au>Obrosky, D. Scott</au><au>Stone, Roslyn A</au><au>Auble, Thomas E</au><au>Perrier, Arnaud</au><au>Cornuz, Jacques</au><au>Roy, Pierre-Marie</au><au>Fine, Michael J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation and Validation of a Prognostic Model for Pulmonary Embolism</atitle><jtitle>American journal of respiratory and critical care medicine</jtitle><addtitle>Am J Respir Crit Care Med</addtitle><date>2005-10-15</date><risdate>2005</risdate><volume>172</volume><issue>8</issue><spage>1041</spage><epage>1046</epage><pages>1041-1046</pages><issn>1073-449X</issn><eissn>1535-4970</eissn><abstract>An objective and simple prognostic model for patients with pulmonary embolism could be helpful in guiding initial intensity of treatment. To develop a clinical prediction rule that accurately classifies patients with pulmonary embolism into categories of increasing risk of mortality and other adverse medical outcomes. We randomly allocated 15,531 inpatient discharges with pulmonary embolism from 186 Pennsylvania hospitals to derivation (67%) and internal validation (33%) samples. We derived our prediction rule using logistic regression with 30-day mortality as the primary outcome, and patient demographic and clinical data routinely available at presentation as potential predictor variables. We externally validated the rule in 221 inpatients with pulmonary embolism from Switzerland and France. We compared mortality and nonfatal adverse medical outcomes across the derivation and two validation samples. The prediction rule is based on 11 simple patient characteristics that were independently associated with mortality and stratifies patients with pulmonary embolism into five severity classes, with 30-day mortality rates of 0-1.6% in class I, 1.7-3.5% in class II, 3.2-7.1% in class III, 4.0-11.4% in class IV, and 10.0-24.5% in class V across the derivation and validation samples. Inpatient death and nonfatal complications were &lt;or= 1.1% among patients in class I and &lt;or= 1.9% among patients in class II. Our rule accurately classifies patients with pulmonary embolism into classes of increasing risk of mortality and other adverse medical outcomes. Further validation of the rule is important before its implementation as a decision aid to guide the initial management of patients with pulmonary embolism.</abstract><cop>New York, NY</cop><pub>Am Thoracic Soc</pub><pmid>16020800</pmid><doi>10.1164/rccm.200506-862OC</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-449X
ispartof American journal of respiratory and critical care medicine, 2005-10, Vol.172 (8), p.1041-1046
issn 1073-449X
1535-4970
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2718410
source Freely Accessible Science Journals - check A-Z of ejournals; Free E-Journal (出版社公開部分のみ)
subjects Acute Disease
Aged
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Biological and medical sciences
Cause of Death
Comorbidity
Decision Support Techniques
Discriminant Analysis
Female
France - epidemiology
Hospitals
Hospitals, University
Humans
Intensive care medicine
J. Pulmonary Vascular Disease
Laboratories
Logistic Models
Male
Medical sciences
Metabolic diseases
Mortality
Obesity
Patients
Pennsylvania - epidemiology
Pneumology
Predictive Value of Tests
Prognosis
Pulmonary Embolism - classification
Pulmonary Embolism - complications
Pulmonary Embolism - diagnosis
Pulmonary Embolism - mortality
Pulmonary Embolism - therapy
Pulmonary embolisms
Pulmonary hypertension. Acute cor pulmonale. Pulmonary embolism. Pulmonary vascular diseases
Regression analysis
Risk Assessment - organization & administration
Risk Factors
ROC Curve
Severity of Illness Index
Switzerland - epidemiology
Tomography
title Derivation and Validation of a Prognostic Model for Pulmonary Embolism
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A26%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20and%20Validation%20of%20a%20Prognostic%20Model%20for%20Pulmonary%20Embolism&rft.jtitle=American%20journal%20of%20respiratory%20and%20critical%20care%20medicine&rft.au=Aujesky,%20Drahomir&rft.date=2005-10-15&rft.volume=172&rft.issue=8&rft.spage=1041&rft.epage=1046&rft.pages=1041-1046&rft.issn=1073-449X&rft.eissn=1535-4970&rft_id=info:doi/10.1164/rccm.200506-862OC&rft_dat=%3Cproquest_pubme%3E68678280%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c555t-93228fb513648c2b930742f0ce602f1aa51073999368df238671921957a0e15b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=199633800&rft_id=info:pmid/16020800&rfr_iscdi=true