Loading…

Membrane estradiol signaling in the brain

Abstract While the physiology of membrane-initiated estradiol signaling in the nervous system has remained elusive, a great deal of progress has been made toward understanding the activation of cell signaling. Membrane-initiated estradiol signaling activates G proteins and their downstream cascades,...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in neuroendocrinology 2009-08, Vol.30 (3), p.315-327
Main Authors: Micevych, Paul, Dominguez, Reymundo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract While the physiology of membrane-initiated estradiol signaling in the nervous system has remained elusive, a great deal of progress has been made toward understanding the activation of cell signaling. Membrane-initiated estradiol signaling activates G proteins and their downstream cascades, but the identity of membrane receptors and the proximal signaling mechanism(s) have been more difficult to elucidate. Mounting evidence suggests that classical intracellular estrogen receptor-α (ERα) and ERβ are trafficked to the membrane to mediate estradiol cell signaling. Moreover, an interaction of membrane ERα and ERβ with metabotropic glutamate receptors has been identified that explains the pleomorphic actions of membrane-initiated estradiol signaling. This review focuses on the mechanism of actions initiated by membrane estradiol receptors and discusses the role of scaffold proteins and signaling cascades involved in the regulation of nociception, sexual receptivity and the synthesis of neuroprogesterone, an important component in the central nervous system signaling.
ISSN:0091-3022
1095-6808
DOI:10.1016/j.yfrne.2009.04.011