Loading…

Acetate transport and utilization in the rat brain

Acetate, a glial-specific substrate, is an attractive alternative to glucose for the study of neuronal-glial interactions. The present study investigates the kinetics of acetate uptake and utilization in the rat brain in vivo during infusion of [2-¹³C]acetate using NMR spectroscopy. When plasma acet...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neurochemistry 2009-05, Vol.109 (s1), p.46-54
Main Authors: Deelchand, Dinesh K, Shestov, Alexander A, Koski, Dee M, Uğurbil, Kâmil, Henry, Pierre-Gilles
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c7095-c5e1dc2c9fc90ddd0fc120fdad64a51d27e4e95fa5fdcdea0d351a06762971ed3
cites cdi_FETCH-LOGICAL-c7095-c5e1dc2c9fc90ddd0fc120fdad64a51d27e4e95fa5fdcdea0d351a06762971ed3
container_end_page 54
container_issue s1
container_start_page 46
container_title Journal of neurochemistry
container_volume 109
creator Deelchand, Dinesh K
Shestov, Alexander A
Koski, Dee M
Uğurbil, Kâmil
Henry, Pierre-Gilles
description Acetate, a glial-specific substrate, is an attractive alternative to glucose for the study of neuronal-glial interactions. The present study investigates the kinetics of acetate uptake and utilization in the rat brain in vivo during infusion of [2-¹³C]acetate using NMR spectroscopy. When plasma acetate concentration was increased, the rate of brain acetate utilization (CMRace) increased progressively and reached close to saturation for plasma acetate concentration > 2-3 mM, whereas brain acetate concentration continued to increase. The Michaelis-Menten constant for brain acetate utilization ( [graphic removed] = 0.01 ± 0.14 mM) was much smaller than for acetate transport through the blood-brain barrier (BBB) ( [graphic removed] = 4.18 ± 0.83 mM). The maximum transport capacity of acetate through the BBB ( [graphic removed] = 0.96 ± 0.18 μmol/g/min) was nearly twofold higher than the maximum rate of brain acetate utilization ( [graphic removed] = 0.50 ± 0.08 μmol/g/min). We conclude that, under our experimental conditions, brain acetate utilization is saturated when plasma acetate concentrations increase above 2-3 mM. At such high plasma acetate concentration, the rate-limiting step for glial acetate metabolism is not the BBB, but occurs after entry of acetate into the brain.
doi_str_mv 10.1111/j.1471-4159.2009.05895.x
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2722917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1676093121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c7095-c5e1dc2c9fc90ddd0fc120fdad64a51d27e4e95fa5fdcdea0d351a06762971ed3</originalsourceid><addsrcrecordid>eNqNkktvEzEUhS0EoqHwF2DEgt0M18-JFyBVERRQBQvo2nJtT-toYgfbU1p-fT0kKo8N8caW_J2jq3MuQg2GDtfzet1h1uOWYS47AiA74EvJu5sHaHH_8RAtAAhpKTByhJ7kvAbAggn8GB1hSSUFWC4QOTGu6OKaknTI25hKo4NtpuJH_1MXH0PjQ1OuXJN0aS6S9uEpejToMbtn-_sYnb9_9231oT37cvpxdXLWmh4kbw132Bpi5GAkWGthMJjAYLUVTHNsSe-Yk3zQfLDGOg2WcqxB9ILIHjtLj9Hbne92utg4a1yoM45qm_xGp1sVtVd__wR_pS7jtSI9IRL31eDV3iDF75PLRW18Nm4cdXBxyoqAEDUpehBIYSkPADmjDFgFX_4DruOUQo1rNuOsJ5z_D8K1IVGh5Q4yKeac3HAfAAY1L4Naq7lzNXeu5mVQv5ZB3VTp8z8D_C3ct1-BNzvghx_d7cHG6tPn1fyq-hc7_aCj0pfJZ3X-lUAdHAssKGP0DnXIy1g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206513006</pqid></control><display><type>article</type><title>Acetate transport and utilization in the rat brain</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Deelchand, Dinesh K ; Shestov, Alexander A ; Koski, Dee M ; Uğurbil, Kâmil ; Henry, Pierre-Gilles</creator><creatorcontrib>Deelchand, Dinesh K ; Shestov, Alexander A ; Koski, Dee M ; Uğurbil, Kâmil ; Henry, Pierre-Gilles</creatorcontrib><description>Acetate, a glial-specific substrate, is an attractive alternative to glucose for the study of neuronal-glial interactions. The present study investigates the kinetics of acetate uptake and utilization in the rat brain in vivo during infusion of [2-¹³C]acetate using NMR spectroscopy. When plasma acetate concentration was increased, the rate of brain acetate utilization (CMRace) increased progressively and reached close to saturation for plasma acetate concentration &gt; 2-3 mM, whereas brain acetate concentration continued to increase. The Michaelis-Menten constant for brain acetate utilization ( [graphic removed] = 0.01 ± 0.14 mM) was much smaller than for acetate transport through the blood-brain barrier (BBB) ( [graphic removed] = 4.18 ± 0.83 mM). The maximum transport capacity of acetate through the BBB ( [graphic removed] = 0.96 ± 0.18 μmol/g/min) was nearly twofold higher than the maximum rate of brain acetate utilization ( [graphic removed] = 0.50 ± 0.08 μmol/g/min). We conclude that, under our experimental conditions, brain acetate utilization is saturated when plasma acetate concentrations increase above 2-3 mM. At such high plasma acetate concentration, the rate-limiting step for glial acetate metabolism is not the BBB, but occurs after entry of acetate into the brain.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1111/j.1471-4159.2009.05895.x</identifier><identifier>PMID: 19393008</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>13C ; acetate ; Acetates - administration &amp; dosage ; Acetates - blood ; Acetates - metabolism ; Algorithms ; Amino Acids - metabolism ; Animals ; Astrocytes - metabolism ; Biochemistry ; Biological Transport, Active - physiology ; Biotransformation ; Brain ; Brain Chemistry - physiology ; C ; Citric Acid Cycle - physiology ; Glutamic Acid - metabolism ; Glutamine - metabolism ; Infusions, Intravenous ; Kinetics ; LCModel ; Magnetic Resonance Spectroscopy ; Male ; Neurology ; NMR spectroscopy ; nuclear magnetic resonance spectroscopy ; Pyruvate Carboxylase - metabolism ; Rats ; Rats, Sprague-Dawley ; Rodents ; Substrates ; transport</subject><ispartof>Journal of neurochemistry, 2009-05, Vol.109 (s1), p.46-54</ispartof><rights>2009 The Authors. Journal Compilation © 2009 International Society for Neurochemistry</rights><rights>Journal compilation © 2009 International Society for Neurochemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c7095-c5e1dc2c9fc90ddd0fc120fdad64a51d27e4e95fa5fdcdea0d351a06762971ed3</citedby><cites>FETCH-LOGICAL-c7095-c5e1dc2c9fc90ddd0fc120fdad64a51d27e4e95fa5fdcdea0d351a06762971ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19393008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deelchand, Dinesh K</creatorcontrib><creatorcontrib>Shestov, Alexander A</creatorcontrib><creatorcontrib>Koski, Dee M</creatorcontrib><creatorcontrib>Uğurbil, Kâmil</creatorcontrib><creatorcontrib>Henry, Pierre-Gilles</creatorcontrib><title>Acetate transport and utilization in the rat brain</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>Acetate, a glial-specific substrate, is an attractive alternative to glucose for the study of neuronal-glial interactions. The present study investigates the kinetics of acetate uptake and utilization in the rat brain in vivo during infusion of [2-¹³C]acetate using NMR spectroscopy. When plasma acetate concentration was increased, the rate of brain acetate utilization (CMRace) increased progressively and reached close to saturation for plasma acetate concentration &gt; 2-3 mM, whereas brain acetate concentration continued to increase. The Michaelis-Menten constant for brain acetate utilization ( [graphic removed] = 0.01 ± 0.14 mM) was much smaller than for acetate transport through the blood-brain barrier (BBB) ( [graphic removed] = 4.18 ± 0.83 mM). The maximum transport capacity of acetate through the BBB ( [graphic removed] = 0.96 ± 0.18 μmol/g/min) was nearly twofold higher than the maximum rate of brain acetate utilization ( [graphic removed] = 0.50 ± 0.08 μmol/g/min). We conclude that, under our experimental conditions, brain acetate utilization is saturated when plasma acetate concentrations increase above 2-3 mM. At such high plasma acetate concentration, the rate-limiting step for glial acetate metabolism is not the BBB, but occurs after entry of acetate into the brain.</description><subject>13C</subject><subject>acetate</subject><subject>Acetates - administration &amp; dosage</subject><subject>Acetates - blood</subject><subject>Acetates - metabolism</subject><subject>Algorithms</subject><subject>Amino Acids - metabolism</subject><subject>Animals</subject><subject>Astrocytes - metabolism</subject><subject>Biochemistry</subject><subject>Biological Transport, Active - physiology</subject><subject>Biotransformation</subject><subject>Brain</subject><subject>Brain Chemistry - physiology</subject><subject>C</subject><subject>Citric Acid Cycle - physiology</subject><subject>Glutamic Acid - metabolism</subject><subject>Glutamine - metabolism</subject><subject>Infusions, Intravenous</subject><subject>Kinetics</subject><subject>LCModel</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Male</subject><subject>Neurology</subject><subject>NMR spectroscopy</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>Pyruvate Carboxylase - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rodents</subject><subject>Substrates</subject><subject>transport</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkktvEzEUhS0EoqHwF2DEgt0M18-JFyBVERRQBQvo2nJtT-toYgfbU1p-fT0kKo8N8caW_J2jq3MuQg2GDtfzet1h1uOWYS47AiA74EvJu5sHaHH_8RAtAAhpKTByhJ7kvAbAggn8GB1hSSUFWC4QOTGu6OKaknTI25hKo4NtpuJH_1MXH0PjQ1OuXJN0aS6S9uEpejToMbtn-_sYnb9_9231oT37cvpxdXLWmh4kbw132Bpi5GAkWGthMJjAYLUVTHNsSe-Yk3zQfLDGOg2WcqxB9ILIHjtLj9Hbne92utg4a1yoM45qm_xGp1sVtVd__wR_pS7jtSI9IRL31eDV3iDF75PLRW18Nm4cdXBxyoqAEDUpehBIYSkPADmjDFgFX_4DruOUQo1rNuOsJ5z_D8K1IVGh5Q4yKeac3HAfAAY1L4Naq7lzNXeu5mVQv5ZB3VTp8z8D_C3ct1-BNzvghx_d7cHG6tPn1fyq-hc7_aCj0pfJZ3X-lUAdHAssKGP0DnXIy1g</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Deelchand, Dinesh K</creator><creator>Shestov, Alexander A</creator><creator>Koski, Dee M</creator><creator>Uğurbil, Kâmil</creator><creator>Henry, Pierre-Gilles</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>200905</creationdate><title>Acetate transport and utilization in the rat brain</title><author>Deelchand, Dinesh K ; Shestov, Alexander A ; Koski, Dee M ; Uğurbil, Kâmil ; Henry, Pierre-Gilles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c7095-c5e1dc2c9fc90ddd0fc120fdad64a51d27e4e95fa5fdcdea0d351a06762971ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>13C</topic><topic>acetate</topic><topic>Acetates - administration &amp; dosage</topic><topic>Acetates - blood</topic><topic>Acetates - metabolism</topic><topic>Algorithms</topic><topic>Amino Acids - metabolism</topic><topic>Animals</topic><topic>Astrocytes - metabolism</topic><topic>Biochemistry</topic><topic>Biological Transport, Active - physiology</topic><topic>Biotransformation</topic><topic>Brain</topic><topic>Brain Chemistry - physiology</topic><topic>C</topic><topic>Citric Acid Cycle - physiology</topic><topic>Glutamic Acid - metabolism</topic><topic>Glutamine - metabolism</topic><topic>Infusions, Intravenous</topic><topic>Kinetics</topic><topic>LCModel</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Male</topic><topic>Neurology</topic><topic>NMR spectroscopy</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>Pyruvate Carboxylase - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rodents</topic><topic>Substrates</topic><topic>transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deelchand, Dinesh K</creatorcontrib><creatorcontrib>Shestov, Alexander A</creatorcontrib><creatorcontrib>Koski, Dee M</creatorcontrib><creatorcontrib>Uğurbil, Kâmil</creatorcontrib><creatorcontrib>Henry, Pierre-Gilles</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deelchand, Dinesh K</au><au>Shestov, Alexander A</au><au>Koski, Dee M</au><au>Uğurbil, Kâmil</au><au>Henry, Pierre-Gilles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acetate transport and utilization in the rat brain</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2009-05</date><risdate>2009</risdate><volume>109</volume><issue>s1</issue><spage>46</spage><epage>54</epage><pages>46-54</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><abstract>Acetate, a glial-specific substrate, is an attractive alternative to glucose for the study of neuronal-glial interactions. The present study investigates the kinetics of acetate uptake and utilization in the rat brain in vivo during infusion of [2-¹³C]acetate using NMR spectroscopy. When plasma acetate concentration was increased, the rate of brain acetate utilization (CMRace) increased progressively and reached close to saturation for plasma acetate concentration &gt; 2-3 mM, whereas brain acetate concentration continued to increase. The Michaelis-Menten constant for brain acetate utilization ( [graphic removed] = 0.01 ± 0.14 mM) was much smaller than for acetate transport through the blood-brain barrier (BBB) ( [graphic removed] = 4.18 ± 0.83 mM). The maximum transport capacity of acetate through the BBB ( [graphic removed] = 0.96 ± 0.18 μmol/g/min) was nearly twofold higher than the maximum rate of brain acetate utilization ( [graphic removed] = 0.50 ± 0.08 μmol/g/min). We conclude that, under our experimental conditions, brain acetate utilization is saturated when plasma acetate concentrations increase above 2-3 mM. At such high plasma acetate concentration, the rate-limiting step for glial acetate metabolism is not the BBB, but occurs after entry of acetate into the brain.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>19393008</pmid><doi>10.1111/j.1471-4159.2009.05895.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3042
ispartof Journal of neurochemistry, 2009-05, Vol.109 (s1), p.46-54
issn 0022-3042
1471-4159
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2722917
source Wiley-Blackwell Read & Publish Collection; Free Full-Text Journals in Chemistry
subjects 13C
acetate
Acetates - administration & dosage
Acetates - blood
Acetates - metabolism
Algorithms
Amino Acids - metabolism
Animals
Astrocytes - metabolism
Biochemistry
Biological Transport, Active - physiology
Biotransformation
Brain
Brain Chemistry - physiology
C
Citric Acid Cycle - physiology
Glutamic Acid - metabolism
Glutamine - metabolism
Infusions, Intravenous
Kinetics
LCModel
Magnetic Resonance Spectroscopy
Male
Neurology
NMR spectroscopy
nuclear magnetic resonance spectroscopy
Pyruvate Carboxylase - metabolism
Rats
Rats, Sprague-Dawley
Rodents
Substrates
transport
title Acetate transport and utilization in the rat brain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A13%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acetate%20transport%20and%20utilization%20in%20the%20rat%20brain&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Deelchand,%20Dinesh%20K&rft.date=2009-05&rft.volume=109&rft.issue=s1&rft.spage=46&rft.epage=54&rft.pages=46-54&rft.issn=0022-3042&rft.eissn=1471-4159&rft_id=info:doi/10.1111/j.1471-4159.2009.05895.x&rft_dat=%3Cproquest_pubme%3E1676093121%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c7095-c5e1dc2c9fc90ddd0fc120fdad64a51d27e4e95fa5fdcdea0d351a06762971ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=206513006&rft_id=info:pmid/19393008&rfr_iscdi=true