Loading…
A statistical framework for protein quantitation in bottom-up MS-based proteomics
Motivation: Quantitative mass spectrometry-based proteomics requires protein-level estimates and associated confidence measures. Challenges include the presence of low quality or incorrectly identified peptides and informative missingness. Furthermore, models are required for rolling peptide-level i...
Saved in:
Published in: | Bioinformatics 2009-08, Vol.25 (16), p.2028-2034 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c634t-85ecf7e151638138db20aeea2ae18269dcb6f121bd0a13e87c85a4ddeaf67ee83 |
---|---|
cites | cdi_FETCH-LOGICAL-c634t-85ecf7e151638138db20aeea2ae18269dcb6f121bd0a13e87c85a4ddeaf67ee83 |
container_end_page | 2034 |
container_issue | 16 |
container_start_page | 2028 |
container_title | Bioinformatics |
container_volume | 25 |
creator | Karpievitch, Yuliya Stanley, Jeff Taverner, Thomas Huang, Jianhua Adkins, Joshua N. Ansong, Charles Heffron, Fred Metz, Thomas O. Qian, Wei-Jun Yoon, Hyunjin Smith, Richard D. Dabney, Alan R. |
description | Motivation: Quantitative mass spectrometry-based proteomics requires protein-level estimates and associated confidence measures. Challenges include the presence of low quality or incorrectly identified peptides and informative missingness. Furthermore, models are required for rolling peptide-level information up to the protein level. Results: We present a statistical model that carefully accounts for informative missingness in peak intensities and allows unbiased, model-based, protein-level estimation and inference. The model is applicable to both label-based and label-free quantitation experiments. We also provide automated, model-based, algorithms for filtering of proteins and peptides as well as imputation of missing values. Two LC/MS datasets are used to illustrate the methods. In simulation studies, our methods are shown to achieve substantially more discoveries than standard alternatives. Availability: The software has been made available in the open-source proteomics platform DAnTE (http://omics.pnl.gov/software/). Contact: adabney@stat.tamu.edu Supplementary information: Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btp362 |
format | article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2723007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btp362</oup_id><sourcerecordid>1828841041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634t-85ecf7e151638138db20aeea2ae18269dcb6f121bd0a13e87c85a4ddeaf67ee83</originalsourceid><addsrcrecordid>eNqNks1u1TAQhSMEoqXwCKAICboKtT3xTzZI1YXSVkVQFSTExnKSCbhN4tR2oLw9vsrVhbIAVrbl7xx7Zk6WPabkBSUVHNTW2bFzfjDRNuGgjhMIdifbpaUgBSO8upv2IGRRKgI72YMQLgnhtCzL-9kOrThwDmo3Oz_MQ0wWIbmYPu-8GfC781d5ss4n7yLaMb-ezRjtGnNjns61i9ENxTzlby-K2gRsF9QN6SsPs3ud6QM-2qx72cej1x9Wx8XZuzcnq8OzohFQxkJxbDqJlFMBioJqa0YMomEGqWKiaptadJTRuiWGAirZKG7KtkXTCYmoYC97ufhOcz1g2-AYven15O1g_A_tjNW3b0b7VX9x3zSTDAiRyWB_Y-Dd9Ywh6sGGBvvejOjmoCUAlxIYTeTzv5JQKsYY_BtkRMqKEJHAp3-Al272Y-qXppUSQkm-rpAvUONdCB67bXGU6HUI9O0Q6CUESffk9878Um2mnoBnG8CENPU09LGxYcsxqigpWZU4snBunv777WKRpEThzVZk_JUWEiTXx58-69PzI8FWF6_0e_gJ5AHidw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198668758</pqid></control><display><type>article</type><title>A statistical framework for protein quantitation in bottom-up MS-based proteomics</title><source>Open Access: Oxford University Press Open Journals</source><creator>Karpievitch, Yuliya ; Stanley, Jeff ; Taverner, Thomas ; Huang, Jianhua ; Adkins, Joshua N. ; Ansong, Charles ; Heffron, Fred ; Metz, Thomas O. ; Qian, Wei-Jun ; Yoon, Hyunjin ; Smith, Richard D. ; Dabney, Alan R.</creator><creatorcontrib>Karpievitch, Yuliya ; Stanley, Jeff ; Taverner, Thomas ; Huang, Jianhua ; Adkins, Joshua N. ; Ansong, Charles ; Heffron, Fred ; Metz, Thomas O. ; Qian, Wei-Jun ; Yoon, Hyunjin ; Smith, Richard D. ; Dabney, Alan R.</creatorcontrib><description>Motivation: Quantitative mass spectrometry-based proteomics requires protein-level estimates and associated confidence measures. Challenges include the presence of low quality or incorrectly identified peptides and informative missingness. Furthermore, models are required for rolling peptide-level information up to the protein level. Results: We present a statistical model that carefully accounts for informative missingness in peak intensities and allows unbiased, model-based, protein-level estimation and inference. The model is applicable to both label-based and label-free quantitation experiments. We also provide automated, model-based, algorithms for filtering of proteins and peptides as well as imputation of missing values. Two LC/MS datasets are used to illustrate the methods. In simulation studies, our methods are shown to achieve substantially more discoveries than standard alternatives. Availability: The software has been made available in the open-source proteomics platform DAnTE (http://omics.pnl.gov/software/). Contact: adabney@stat.tamu.edu Supplementary information: Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btp362</identifier><identifier>PMID: 19535538</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Biological and medical sciences ; Databases, Protein ; Fundamental and applied biological sciences. Psychology ; General aspects ; Mass Spectrometry - methods ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Models, Statistical ; Original Papers ; Proteins - analysis ; Proteome - analysis ; Proteomics - methods</subject><ispartof>Bioinformatics, 2009-08, Vol.25 (16), p.2028-2034</ispartof><rights>The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2009</rights><rights>2009 INIST-CNRS</rights><rights>The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c634t-85ecf7e151638138db20aeea2ae18269dcb6f121bd0a13e87c85a4ddeaf67ee83</citedby><cites>FETCH-LOGICAL-c634t-85ecf7e151638138db20aeea2ae18269dcb6f121bd0a13e87c85a4ddeaf67ee83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723007/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723007/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1603,27915,27916,53782,53784</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btp362$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21810429$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19535538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karpievitch, Yuliya</creatorcontrib><creatorcontrib>Stanley, Jeff</creatorcontrib><creatorcontrib>Taverner, Thomas</creatorcontrib><creatorcontrib>Huang, Jianhua</creatorcontrib><creatorcontrib>Adkins, Joshua N.</creatorcontrib><creatorcontrib>Ansong, Charles</creatorcontrib><creatorcontrib>Heffron, Fred</creatorcontrib><creatorcontrib>Metz, Thomas O.</creatorcontrib><creatorcontrib>Qian, Wei-Jun</creatorcontrib><creatorcontrib>Yoon, Hyunjin</creatorcontrib><creatorcontrib>Smith, Richard D.</creatorcontrib><creatorcontrib>Dabney, Alan R.</creatorcontrib><title>A statistical framework for protein quantitation in bottom-up MS-based proteomics</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: Quantitative mass spectrometry-based proteomics requires protein-level estimates and associated confidence measures. Challenges include the presence of low quality or incorrectly identified peptides and informative missingness. Furthermore, models are required for rolling peptide-level information up to the protein level. Results: We present a statistical model that carefully accounts for informative missingness in peak intensities and allows unbiased, model-based, protein-level estimation and inference. The model is applicable to both label-based and label-free quantitation experiments. We also provide automated, model-based, algorithms for filtering of proteins and peptides as well as imputation of missing values. Two LC/MS datasets are used to illustrate the methods. In simulation studies, our methods are shown to achieve substantially more discoveries than standard alternatives. Availability: The software has been made available in the open-source proteomics platform DAnTE (http://omics.pnl.gov/software/). Contact: adabney@stat.tamu.edu Supplementary information: Supplementary data are available at Bioinformatics online.</description><subject>Biological and medical sciences</subject><subject>Databases, Protein</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Mass Spectrometry - methods</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Models, Statistical</subject><subject>Original Papers</subject><subject>Proteins - analysis</subject><subject>Proteome - analysis</subject><subject>Proteomics - methods</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNks1u1TAQhSMEoqXwCKAICboKtT3xTzZI1YXSVkVQFSTExnKSCbhN4tR2oLw9vsrVhbIAVrbl7xx7Zk6WPabkBSUVHNTW2bFzfjDRNuGgjhMIdifbpaUgBSO8upv2IGRRKgI72YMQLgnhtCzL-9kOrThwDmo3Oz_MQ0wWIbmYPu-8GfC781d5ss4n7yLaMb-ezRjtGnNjns61i9ENxTzlby-K2gRsF9QN6SsPs3ud6QM-2qx72cej1x9Wx8XZuzcnq8OzohFQxkJxbDqJlFMBioJqa0YMomEGqWKiaptadJTRuiWGAirZKG7KtkXTCYmoYC97ufhOcz1g2-AYven15O1g_A_tjNW3b0b7VX9x3zSTDAiRyWB_Y-Dd9Ywh6sGGBvvejOjmoCUAlxIYTeTzv5JQKsYY_BtkRMqKEJHAp3-Al272Y-qXppUSQkm-rpAvUONdCB67bXGU6HUI9O0Q6CUESffk9878Um2mnoBnG8CENPU09LGxYcsxqigpWZU4snBunv777WKRpEThzVZk_JUWEiTXx58-69PzI8FWF6_0e_gJ5AHidw</recordid><startdate>20090815</startdate><enddate>20090815</enddate><creator>Karpievitch, Yuliya</creator><creator>Stanley, Jeff</creator><creator>Taverner, Thomas</creator><creator>Huang, Jianhua</creator><creator>Adkins, Joshua N.</creator><creator>Ansong, Charles</creator><creator>Heffron, Fred</creator><creator>Metz, Thomas O.</creator><creator>Qian, Wei-Jun</creator><creator>Yoon, Hyunjin</creator><creator>Smith, Richard D.</creator><creator>Dabney, Alan R.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090815</creationdate><title>A statistical framework for protein quantitation in bottom-up MS-based proteomics</title><author>Karpievitch, Yuliya ; Stanley, Jeff ; Taverner, Thomas ; Huang, Jianhua ; Adkins, Joshua N. ; Ansong, Charles ; Heffron, Fred ; Metz, Thomas O. ; Qian, Wei-Jun ; Yoon, Hyunjin ; Smith, Richard D. ; Dabney, Alan R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634t-85ecf7e151638138db20aeea2ae18269dcb6f121bd0a13e87c85a4ddeaf67ee83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological and medical sciences</topic><topic>Databases, Protein</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Mass Spectrometry - methods</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Models, Statistical</topic><topic>Original Papers</topic><topic>Proteins - analysis</topic><topic>Proteome - analysis</topic><topic>Proteomics - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karpievitch, Yuliya</creatorcontrib><creatorcontrib>Stanley, Jeff</creatorcontrib><creatorcontrib>Taverner, Thomas</creatorcontrib><creatorcontrib>Huang, Jianhua</creatorcontrib><creatorcontrib>Adkins, Joshua N.</creatorcontrib><creatorcontrib>Ansong, Charles</creatorcontrib><creatorcontrib>Heffron, Fred</creatorcontrib><creatorcontrib>Metz, Thomas O.</creatorcontrib><creatorcontrib>Qian, Wei-Jun</creatorcontrib><creatorcontrib>Yoon, Hyunjin</creatorcontrib><creatorcontrib>Smith, Richard D.</creatorcontrib><creatorcontrib>Dabney, Alan R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karpievitch, Yuliya</au><au>Stanley, Jeff</au><au>Taverner, Thomas</au><au>Huang, Jianhua</au><au>Adkins, Joshua N.</au><au>Ansong, Charles</au><au>Heffron, Fred</au><au>Metz, Thomas O.</au><au>Qian, Wei-Jun</au><au>Yoon, Hyunjin</au><au>Smith, Richard D.</au><au>Dabney, Alan R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A statistical framework for protein quantitation in bottom-up MS-based proteomics</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2009-08-15</date><risdate>2009</risdate><volume>25</volume><issue>16</issue><spage>2028</spage><epage>2034</epage><pages>2028-2034</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: Quantitative mass spectrometry-based proteomics requires protein-level estimates and associated confidence measures. Challenges include the presence of low quality or incorrectly identified peptides and informative missingness. Furthermore, models are required for rolling peptide-level information up to the protein level. Results: We present a statistical model that carefully accounts for informative missingness in peak intensities and allows unbiased, model-based, protein-level estimation and inference. The model is applicable to both label-based and label-free quantitation experiments. We also provide automated, model-based, algorithms for filtering of proteins and peptides as well as imputation of missing values. Two LC/MS datasets are used to illustrate the methods. In simulation studies, our methods are shown to achieve substantially more discoveries than standard alternatives. Availability: The software has been made available in the open-source proteomics platform DAnTE (http://omics.pnl.gov/software/). Contact: adabney@stat.tamu.edu Supplementary information: Supplementary data are available at Bioinformatics online.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>19535538</pmid><doi>10.1093/bioinformatics/btp362</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2009-08, Vol.25 (16), p.2028-2034 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2723007 |
source | Open Access: Oxford University Press Open Journals |
subjects | Biological and medical sciences Databases, Protein Fundamental and applied biological sciences. Psychology General aspects Mass Spectrometry - methods Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Models, Statistical Original Papers Proteins - analysis Proteome - analysis Proteomics - methods |
title | A statistical framework for protein quantitation in bottom-up MS-based proteomics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20statistical%20framework%20for%20protein%20quantitation%20in%20bottom-up%20MS-based%20proteomics&rft.jtitle=Bioinformatics&rft.au=Karpievitch,%20Yuliya&rft.date=2009-08-15&rft.volume=25&rft.issue=16&rft.spage=2028&rft.epage=2034&rft.pages=2028-2034&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/btp362&rft_dat=%3Cproquest_TOX%3E1828841041%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c634t-85ecf7e151638138db20aeea2ae18269dcb6f121bd0a13e87c85a4ddeaf67ee83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=198668758&rft_id=info:pmid/19535538&rft_oup_id=10.1093/bioinformatics/btp362&rfr_iscdi=true |